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Abstract

Experimentation is key to learning about our world, but careful design of experiments is critical to ensure

resources are used efficiently to conduct discerning investigations. Bayesian experimental design (BED)

is an elegant framework that provides a mathematical definition of the expected information gain (EIG)

of running a certain experiment. Finding the design with the maximal EIG will, in expectation, give

experimental outcomes that are most informative about the underlying phenomenon.

BED promises to launch a revolution in science and machine learning, but it is only beginning to realise

its potential due to numerous unsolved computational problems. One fundamental computational issue

is the estimation of EIG, where a naïve approach necessitates nested calculation of Bayesian posteriors.

Further computational challenges concern the optimisation of the EIG across design space, and the design

of adaptive experiments that use data that has been already observed to find the optimal design of the

next experiment.

In this thesis, we ask whether the machinery of modern machine learning can be brought to bear on

these computational challenges, demonstrating that significant advances are possible when modern ML

is combined with a deep understanding of BED. We begin by examining the EIG estimation problem,

being the first to apply variational inference and inference amortisation to the problem. We then turn to

optimisation of the EIG over a continuous design space, showing that stochastic gradient methods, which

have not been widely adopted in BED, combine with simultaneous optimisation of variational parameters

to great effect. Continuing on this theme, we show that it is possible to obtain unbiased gradients of

EIG using Multi-level Monte Carlo. For the adaptive design problem, a key limitation of most methods

is that they require substantial computation at each iteration of the experiment. We ask whether this

process itself cannot be amortised, ultimately deriving an algorithm that trains a design policy network

offline to be deployed with lightning-fast design decisions during a live experiment. Finally, we show how

this policy-driven approach extends to implicit models.

Together, these contributions move the field of Bayesian experimental design forward significantly in

terms of what is computationally possible. Our hope is that practitioners will be able to apply these

ideas to advance human understanding in many scientific disciplines.
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Chapter 1

Bayesian Experimental Design

Literature Review: Connections with

Bayesian Active Learning, Bayesian

Optimisation and Bayesian

Reinforcement Learning

1.1 Introduction

If true knowledge arises from empirical observations, it is natural to ask which kinds of observations we

should actively seek out to further our understanding of nature. In its broadest sense, this is the question

that the design of experiments seeks to answer. An experimental design is an allocation of resources—

e.g. time, human attention, chemical reagents, physical space—that will be used to obtain empirical

observations. The design space is the set of designs that we could feasibly choose for the experiment; the

problem of experimental design is to pick a design to use for the real experiment. The choice of design

is an important one: we could easily waste resources on poorly designed experiments that do not further

our understanding. By carefully designing experiments, we can efficiently gather empirical observations

that lead to new ideas, hypotheses, conclusions and models.

It is therefore unsurprising that we find experimental design to be a key concern in scientific disciplines

as diverse as psychology (Myung et al., 2013), bioinformatics (Vanlier et al., 2012), pharmacology (Lyu

et al., 2019), physics (Dushenko et al., 2020), neuroscience (Shababo et al., 2013), astronomy (Loredo,

2004) and engineering (Papadimitriou, 2004). It is also is a natural abstraction for several central

problems in machine learning, including active learning (Houlsby et al., 2011; Gal et al., 2017), Bayesian
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optimisation (Hernández-Lobato et al., 2014; Shahriari et al., 2015) and exploration (Sun et al., 2011;

Shyam et al., 2019).

In many practical cases, experimental design is not used just once. Indeed, many experiments are

naturally adaptive: they are an iterative process in which we can select the designs for later iterations on

the basis of data already gathered. This allows feedback from the outcome of one experiment iteration

to be used to guide the design of the next iteration. This setting can be particularly powerful because,

as we gain some information about the system, it may become clearer how we should proceed to design

our experiments to investigate further, thereby honing in quickly on the truth.

To choose between different possible experimental designs requires an objective function. In general, the

objective depends not only on known quantities (such as the cost of the experiment), but also on the not-

yet-observed outcome of the experiment and potentially on other unobserved quantities. For example, the

objective function for a chemical experiment might reward correctly synthesising a product, something

that will only be observed once the experiment is completed. To reason about objective functions that

depend on unknowns in this way requires the incorporation of some a priori knowledge. This a priori

knowledge is then used to select the design before commencing the experiment. In this work, we focus on

the Bayesian approach to this problem (Lindley, 1956, 1972; Chaloner and Verdinelli, 1995; Ryan et al.,

2016; Foster et al., 2019) in which a priori knowledge is encoded in two ways—first, the specification

of a model for the experiment, and second in the prior distribution for the unknown parameters of that

model. In classical Bayesian experimental design, the model itself is assumed to be correct. The prior

distribution explicitly represents initial beliefs about unknown parameters of the model. Furthermore,

uncertainty in the prior is exactly the epistemic uncertainty that can be reduced by running experiments

and collecting data, resulting in more precise a posteriori knowledge.

In this literature review, we begin with a brief survey of foundational concepts in Bayesian data analysis

(Sec. 1.2). We then turn to the core theory of Bayesian experimental design (Sec. 1.3), discussing criteria

that have been used within the statistics community, with an emphasis on expected information gain.

In Sec. 1.4, we discuss computational methods for Bayesian experimental that have been used within

statistics, and in Sec. 1.5 we discuss active learning. We then discuss models in which the target of

experimental design is embedded in a larger model (Sec. 1.6); Bayesian optimisation (Sec. 1.7) is a

specific instance of this. Finally, we delve into the theory of the sequential experimental design problem

(Sec. 1.8), and highlight connections with exploration and Bayesian reinforcement learning (Sec. 1.9).

1.2 Background on Bayesian statistics

We first introduce necessary notation and key concepts in Bayesian data analysis1. The first ingredient

of any Bayesian analysis is a full probability model that places a joint distribution over all observable and

unobservable quantities. We denote the parameters of interest, also called the latent variable of interest,
1More details on Bayesian data analysis can be found in modern textbooks on the topic, such as Gelman et al. (2013)

and Kruschke (2014).
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by θ ∈ Θ. This may be a scalar, vector, or a function depending on the model. We denote the observed

data, or outcome, as y ∈ Y. The full probability model is simply a probability distribution p(θ, y) on

Θ× Y. Typically, the full probability model can be factorised as

p(θ, y) = p(θ)p(y|θ) (1.1)

where p(θ) denotes the prior on θ, and p(y|θ) is the likelihood function2, or sampling distribution.

Since we are interested in experimental design, we also introduce the design or covariate ξ ∈ Ξ. This is

not typically treated as a random variable, because it is assumed to be directly under the experimenter’s

control. Instead, for each possible design ξ, we have a different probability model p(θ, y|ξ). Different

choices of ξ should not alter our prior p(θ), thus the change in the probability model is only felt through

the likelihood, so we can write p(θ, y|ξ) = p(θ)p(y|θ, ξ). Intuitively, this says that the design of the

experiment ξ does not change the natural environment, but it can change the outcome of an experiment

that we choose to run.

Once we have chosen ξ and run our experiment to obtain y, we can make probability statements about

θ by applying Bayes’ Rule to calculate the posterior

p(θ|ξ, y) =
p(θ)p(y|θ, ξ)∫

Θ
p(θ′)p(y|θ′, ξ)dθ′ =

p(θ)p(y|θ, ξ)
p(y|ξ) . (1.2)

In general, actually performing Bayesian inference to calculate p(θ|ξ, y) can be computationally challeng-

ing.

1.2.1 Explicit and implicit models

If the likelihood p(y|θ, ξ) is known in closed form, then the probability model is called an explicit likelihood

model. Most Bayesian statistics assumes an explicit likelihood. If no closed form likelihood is available,

the model is an implicit likelihood model (Sisson et al., 2018). Implicit models often arise when θ, y and

ξ are related by a simulator (Alsing et al., 2019; Brehmer et al., 2018; Gonçalves et al., 2020) that can

produce samples of p(y|θ, ξ), but does not have a closed form probability density.

Similarly, if p(θ) is known in closed form, then the model is said to have an explicit prior, otherwise, the

prior is said to be implicit.

1.2.2 Sequential data collection

So far, we have considered choosing ξ, collecting y, and analysing the data by computing p(θ|ξ, y). A

more realistic setting is to consider a sequence ξ1 . . . ξT of designs with corresponding outcomes y1, . . . , yT .

This means that we run T different experiments with T different designs, each with its own corresponding

outcome. The value of θ, although unknown, is assumed to be the same across all the T experiments—
2Strictly, the likelihood describes the sampling distribution p(y|θ) as a function of θ for a fixed y; we use likelihood in

a slightly looser sense to refer to p(y|θ) in general.
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that means that we are conducting multiple experiments in the same natural environment to gather

further information about it, instead of starting afresh in a new environment for each new experiment.

In an exchangeable model (Bloem-Reddy and Teh, 2019), the order of the experiments does not matter.

This is equivalent (Øksendal, 2003) to the following factorisation of the full probability model

p(θ, y1:T |ξ1:T ) = p(θ)

T∏

t=1

p(yt|θ, ξt). (1.3)

for some random variable θ. The question is whether we can identify this θ with the model parameters

of interest θ. In general, this is valid when there are no other model parameters besides θ. Indeed, in

a full statistical model with parameters θ (Cox, 2006), it is common to assume that the outcomes of

different experiments are independent given θ, which is equivalent to the factorisation in equation (1.3).

We discuss the case in which there are other model parameters aside from θ in Sec. 1.6.

In non-exchangeable models, there is no assumption of conditional independence between experiments.

Such models can arise in settings such as time series (Pole et al., 2018). In a non-exchangeable model,

the distribution of yt can, for example, be influenced by yt−1 as well as by θ and ξt. Without loss of

generality, the probability model for a non-exchangeable model can be written

p(θ, y1:T |ξ1:T ) = p(θ)

T∏

t=1

p(yt|θ, ξ1:t, y1:t−1). (1.4)

which encodes only the assumption that future experiments cannot affect the outcome of earlier experi-

ments.

Static and adaptive experiments An orthogonal distinction in sequential experiments is how the

designs are generated. In a static experiment, also called fixed, batch, or open loop (DiStefano III et al.,

2014), the designs ξ1, . . . , ξT are chosen before the beginning of the experiment. In an adaptive experiment

(Myung et al., 2013), each ξt is chosen depending on data already seen ξ1, . . . , ξt−1, y1, . . . , yt−1. A simple

consequence of the likelihood principle (Barnard et al., 1962; Birnbaum, 1962) is that the mode in which

the ξt are generated does not affect the posterior distribution on θ calculated from the data. Indeed,

suppose each new design is chosen adaptively from a density p(ξt|ξ1:t−1, y1:t−1). Then the resulting

posterior distribution is

p(θ|ξ1:T , y1:T ) =
p(θ)

∏T
t=1 p(ξt|ξ1:t−1, y1:t−1)p(yt|θ, ξ1:t, y1:t−1)∫

Θ
p(θ′)

∏T
t=1 p(ξt|ξ1:t−1, y1:t−1)p(yt|θ′, ξ1:t, y1:t−1)dθ′

(1.5)

=

∏T
t=1 p(ξt|ξ1:t−1, y1:t−1) p(θ)

∏T
t=1 p(yt|θ, ξ1:t, y1:t−1)

∏T
t=1 p(ξt|ξ1:t−1, y1:t−1)

∫
Θ
p(θ′)

∏T
t=1 p(yt|θ′, ξ1:t, y1:t−1)dθ′

(1.6)

=
p(θ)

∏T
t=1 p(yt|θ, ξ1:t, y1:t−1)∫

Θ
p(θ′)

∏T
t=1 p(yt|θ′, ξ1:t, y1:t−1)dθ′

, (1.7)

which is independent of the mechanism of choosing designs.
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1.2.3 Bayesian decision making

After collecting data ξ1:T , y1:T , suppose that we must choose some decision δ, for example whether to

prescribe a medication or not. The Bayesian approach to selecting the optimal decision (Lindley, 1972;

Robert, 2007) is to specify a utility function U(δ, θ) which should assign a value to the decision δ in

the case that θ is the true value of the unobserved parameter. The optimal decision is then found by

maximising expected utility under the current posterior

δ∗ = arg max
δ∈∆

Ep(θ|ξ1:T ,y1:T )[U(δ, θ)] (1.8)

For a more extensive discussion of Bayesian decision theory, see Berger (2013).

1.3 Bayesian Experimental Design

Experimental design with a Bayesian data analysis model means choosing the design using the likeli-

hood model and the prior p(θ) as a priori information. What criterion should be used to select the

design? Following from Bayesian decision theory, Lindley (1972) proposed a decision-theoretic approach

to Bayesian experimental design that focuses on maximising a utility. Chaloner and Verdinelli (1995)

provides a more recent summary of Lindley’s approach.

First, let us restrict ourselves to a single design ξ with outcome y, leaving the sequential design problem

to Sec. 1.8. In the spirit of Sec. 1.2.3, we consider a utility function U(θ, ξ, y) that may reflect the value

of obtaining the data (ξ, y) when θ is the true value of the parameters, and may also incorporate costs

of the experimental design and outcome. Whilst our discussion in Sec. 1.2.3 assumed that the data ξ, y

had already been gathered, we now need to consider the choice of the design ξ. The order of operation

for the experimenter is as follows:

1. choose design ξ;

2. perform experiment with design ξ, obtaining experimental outcome y;

3. compute the posterior p(θ|ξ, y);

4. the expected utility obtained is then Ep(θ|ξ,y)[U(θ, ξ, y)].

In order to choose ξ optimally, we should therefore consider the different possible observations y that

could arise. Specifically, we will choose ξ to maximise the expected utility, taking an outer expectation

over the observation y using the Bayesian marginal (also called prior predictive) distribution p(y|ξ) =

Ep(θ)[p(y|θ, ξ)]. This leads to the following method of choosing the optimal design

ξ∗ = arg max
ξ∈Ξ

Ep(y|ξ)
[
Ep(θ|ξ,y)[U(θ, ξ, y)]

]
. (1.9)

Proposition 1.1 (Lindley (1972)). It is not necessary to introduce randomness into the selection of ξ.
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Proof. Suppose we consider a randomised way of selecting ξ with distribution p(ξ). The expected reward

of this approach is

Ep(ξ)p(y|ξ)
[
Ep(θ|ξ,y)[U(θ, ξ, y)]

]
≤ sup

ξ∈Ξ
Ep(y|ξ)

[
Ep(θ|ξ,y)[U(θ, ξ, y)]

]
(1.10)

where the righthand side is the expected utility using the non-random ξ∗. So a randomised design is not

required.

The remaining piece of the puzzle is to select a utility function. Some applications feature a highly

problem-specific utility. In other cases, we can rely on general purpose utilities.

1.3.1 Expected Information Gain

Perhaps the most well-studied of all criteria for Bayesian experimental design is expected information

gain (EIG). Within Bayesian experimental design, EIG appears to be dominant in a number of fields.

EIG was proposed by Lindley (1956). Important statistical review papers (Chaloner and Verdinelli,

1995; Ryan et al., 2016) give EIG pride of place within Bayesian experimental design. In psychology,

Myung et al. (2013) promote the use of EIG to run adaptive trials. Several toolboxes (Watson, 2017;

Vincent and Rainforth, 2017) have been designed specifically for the problem of performing adaptive

psychology trials using EIG as the criterion for selecting designs. Heck and Erdfelder (2019) suggest EIG

for experimental design for cognitive models and Cavagnaro et al. (2010) consider its application in the

context of model discrimination in cognitive science. Shababo et al. (2013) applied EIG maximisation

within a Bayesian model of neural microcircuits to choose the right subset of neurons to stimulate in an

experiment. Dushenko et al. (2020) proposed EIG as a criterion for designing measurement settings in

magnetometry. In biochemistry, Busetto et al. (2009) compared EIG with several other criteria for the

design of experiments for biochemical dynamical systems, finding EIG to perform best. In pharmacology,

Lyu et al. (2019); Foster et al. (2020) applied EIG maximisation to design experiments to calibrate a

docking model. Loredo (2004) used EIG for active exploration, specifically investigating the scheduling

of observations of a star to characterise the orbit of a planet. EIG has also been used in active learning,

Bayesian optimisation and reinforcement learning. We discuss these fields separately in Sections 1.5, 1.7

and 1.9.

There are several reasons for the dominance of the EIG. First, it has mathematical properties that make

it very natural for describing information gained from experimentation. We discuss some key properties

of the EIG in this section, and we discuss EIG in sequential settings in Sec. 1.8. More practically, EIG

applies to a range of linear and nonlinear models (unlike some criteria which are more restricted in their

applicability) and handles both continuous and discrete θ.

What does EIG measure? EIG quantifies the amount of information that the experiment with design ξ

is expected to produce about the unknown parameter of interest θ. A higher EIG indicates that doing

the experiment with design ξ is likely to produce data that will be helpful in reducing uncertainty about
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the true value of θ.

To precisely define EIG, we utilise the rigorous probabilistic definition of information that was first

given by Shannon (1948). Lindley (1956) used this work to quantify the information provided by an

experiment. Lindley began by considering the Shannon entropy of a random variable θ

H[p(θ)] = −Ep(θ)[log p(θ)]. (1.11)

One interpretation of entropy is uncertainty in what the true value of θ is. In the experimental design

context, we measure the amount of information that is gained about θ by performing the experiment

with design ξ and obtaining outcome y using the reduction in entropy from the prior to the posterior.

This is referred to as the information gain (IG)

UI(ξ, y) = Ep(θ|ξ,y)[log p(θ|ξ, y)]− Ep(θ)[log p(θ)]. (1.12)

To obtain an objective function for ξ, we can use this utility within the decision-theoretic framework

laid out in the preceding section. We substitute UI into equation (1.9). This gives the overall objective

function to select ξ: the expected information gain (EIG), formed by taking the expectation of UI over

p(y|ξ), giving

I(ξ) = Ep(y|ξ)
[
Ep(θ|ξ,y)[log p(θ|ξ, y)]− Ep(θ)[log p(θ)]

]
. (1.13)

Proposition 1.2 (Lindley (1956)). The EIG at design ξ, I(ξ), is the mutual information between y and

θ under design ξ.

Proof. By repeatedly using Bayes Theorem, we have

I(ξ) = Ep(y|ξ)
[
Ep(θ|ξ,y)[log p(θ|ξ, y)]− Ep(θ)[log p(θ)]

]
(1.14)

= Ep(y|ξ)p(θ|ξ,y)[log p(θ|ξ, y)]− Ep(θ)[log p(θ)] (1.15)

= Ep(θ)p(y|θ,ξ)[log p(θ|ξ, y)− log p(θ)] (1.16)

= Ep(θ)p(y|θ,ξ)
[
log

p(θ|ξ, y)

p(θ)

]
(1.17)

= Ep(θ)p(y|θ,ξ)
[
log

p(θ)p(y|θ, ξ)
p(θ)p(y|ξ)

]
. (1.18)

Proposition 1.3. EIG is unchanged under invertible reparametrisations of θ and y.

Proof. This follows from the well-known property of mutual information (Cover, 1999).

Proposition 1.4 (Bernardo (1979)). EIG can equivalently be derived from the KL-divergence utility

UKL(ξ, y) = KL (p(θ|ξ, y)‖p(θ)) . (1.19)
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Proof. Substituting this utility into equation (1.9) gives us

IKL(ξ) = Ep(y|ξ) [KL (p(θ|ξ, y)‖p(θ))] (1.20)

= Ep(y|ξ)p(θ|y,ξ)
[
log

p(θ|y, ξ)
p(θ)

]
(1.21)

= Ep(θ)p(y|θ,ξ)
[
log

p(θ|y, ξ)
p(θ)

]
= I(ξ) by equation (1.17). (1.22)

Proposition 1.5 (Theorem 6 of Lindley (1956)). EIG is convex in the likelihood.

Proof. Let λ ∈ [0, 1] and ξ0, ξ1 be two designs. Suppose there exists a design ξλ with the following

likelihood

p(y|θ, ξλ) = λp(y|θ, ξ0) + (1− λ)p(y|θ, ξ1). (1.23)

We can interpret an experiment with likelihood p(y|θ, ξλ) as follows. With probability λ, the outcome y is

sampled from p(y|θ, ξ0), and with probability 1−λ it is sampled from p(y|θ, ξ1), but it is unknown which

of the two likelihoods was chosen. We could also consider a different experiment in which we observe

y and the binary random variable u which indicates which likelihood was used. Intuitively, the latter

experiment must contain at least as much information as the first. We can demonstrate this formally

using the information chain rule. The expected information gain of the experiment with outcome u, y

can be expanded as

Iξ,λ(θ; (u, y)) = Iλ(θ;u) + Iξ,λ(θ; y|u), (1.24)

we note θ and u are independent, and we expand the definition of the conditional mutual information

= λIξ0(θ; y) + (1− λ)Iξ1(θ; y). (1.25)

We can also expand the same mutual information as

Iξ,λ(θ; (u, y)) = Iξ,λ(θ; y) + Iξ,λ(θ;u|y) (1.26)

≥ Iξ,λ(θ; y) (1.27)

since conditional mutual information is nonnegative. Finally, Proposition 1.2 tells us that Iλ(θ; y) = I(λ).

Hence,

I(ξλ) ≤ λI(ξ0) + (1− λ)I(ξ1). (1.28)

Proposition 1.6 (Sebastiani andWynn (2000)). EIG can be written as I(ξ) = Ep(θ) [H[p(y|ξ)]−H[p(y|θ, ξ)]].
Furthermore, when H[p(y|θ, ξ)] does not depend on ξ, EIG maximisation is equivalent to maximum en-
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tropy design which selects ξ to maximise H[p(y|ξ)].

Proof. Starting from Proposition 1.2, we have

I(ξ) = Ep(θ)p(y|θ,ξ)
[
log

p(θ)p(y|θ, ξ)
p(θ)p(y|ξ)

]
(1.29)

= Ep(θ)p(y|θ,ξ)[log p(y|θ, ξ)− log p(y|ξ)] (1.30)

= Ep(θ)p(y|θ,ξ)[log p(y|θ, ξ)]− Ep(y|ξ)[log p(y|ξ)] (1.31)

= Ep(θ) [H[p(y|ξ)]−H[p(y|θ, ξ)]] . (1.32)

Now, if H[p(y|θ, ξ)] is independent of ξ, then we have I(ξ) = H[p(y|ξ)] + const., so EIG maximisation

and maximum entropy design lead to the same optimal design.

Remark 1.7 (Smith and Gal (2018)). The EIG at design ξ can be interpreted as a measure of epistemic

uncertainty in the outcome of performing an experiment with design ξ.

Proof. Equation (1.32) breaks the EIG into two terms. The first is the total entropy H[p(y|ξ)], called the

predictive entropy. The second is−Ep(θ)[H[p(y|θ, ξ)]], which represents the expectation of the uncertainty

in y conditional on θ. We can view this as a measure of aleatoric uncertainty—uncertainty which

cannot be eliminated by knowing θ exactly. The EIG is the difference between the total and aleatoric

uncertainties, hence we can interpret it as epistemic uncertainty—the part of H[p(y|ξ)] that can be

reduced by learning about θ.

This interpretation does have its limitations. First, this definition of epistemic uncertainty is a model-

dependent quantity—if we choose a more powerful model, then some variation that had previously

been characterised as aleatoric would now be seen as epistemic. It also rests on our model’s ability

to accurately capture aleatoric uncertainty. Second, the interpretation does not hold true in the case

that θ is a function of a larger set of model parameters ψ, as in Sec. 1.6. This is because the term

−Ep(θ)[H[p(y|θ, ξ)]] no longer represents aleatoric uncertainty, as it also includes some uncertainty that

arises from not knowing the true value of ψ.

Other important features of the EIG in sequential experiments will be discussed in Section 1.8.

1.3.2 Alphabetic criteria

The EIG is only one approach to assigning value to the design of an experiment. Whilst the EIG has

a number of attractive properties, it is not the only criterion to have been explored in the literature.

Perhaps the more classical approach to experimental design is to use one of the ‘alphabetic’ criteria.

Unlike the EIG, the alphabetic criteria stem from research into non-Bayesian linear models, as it was in

this context that the alphabetic criteria were originally proposed. Authors have then sought to gener-

alise these alphabetic criteria, first to the Bayesian linear model, and then to general Bayesian models.

Unfortunately, the resulting criteria do not always map onto Lindley’s general Bayesian methodology as
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outlined in equation (1.9). As the focus in this review is on the EIG, we provide only a brief introduction

to the alphabetic criteria, emphasising the historical development from linear models, and the connection

to the EIG.

Non-Bayesian linear model

The alphabetic criteria were initially proposed in the context of non-Bayesian experimental design for

the linear model

y|θ, ξ ∼ N(ξθ, σ2) (1.33)

where ξ is the n × p design matrix and θ is a p -vector. (In a linear model, we would conventionally

replace θ → β and ξ → X.) The least squares estimator for θ is θ̂ = (ξ>ξ)−1ξ>y. In frequentist analysis

of this estimator, the covariance matrix of θ̂ is proportional to (ξ>ξ)−1. To guide the choice of ξ, Box

(1982) discussed the following notions of optimality of ξ

A-optimality minimise Tr(ξ>ξ)−1, or more generally, minimise TrA(ξ>ξ)−1 for a matrix A;

D-optimality minimise det(ξ>ξ)−1;

E-optimality minimise maxi λi, where λ1, . . . , λp are the eigenvalues of (ξ>ξ)−1;

G-optimality minimise supc∈C c
>(ξ>ξ)−1c, where C is some target region for prediction.

Other alphabetic criteria include

c-optimality (Elfving, 1952) minimise c>(ξ>ξ)−1c for some vector c.

T -optimality (Atkinson and Fedorov, 1975) for model discrimination, which maximises the mini-

mal deviation between a null model and an alternative.

Several key results relate these classical criteria, such as Kiefer and Wolfowitz (1959).

Bayesian linear model

The alphabetic criteria can be extended to Bayesian linear models (Chaloner and Verdinelli, 1995),

using the observation that the posterior covariance matrix for θ is proportional to (ξ>ξ + Σ−1
0 )−1 when

we augment the model in equation (1.33) with a Gaussian prior θ ∼ N(0,Σ0). This allows a direct

generalisation of the alphabetic criteria with (ξ>ξ + Σ−1
0 )−1 playing the role of (ξ>ξ)−1. For example,

Bayesian A-optimality minimises Tr(ξ>ξ + Σ−1
0 )−1, and Bayesian D-optimality minimises det(ξ>ξ +

Σ−1
0 )−1.

One may well ask how these alphabetic criteria relate to our preceding work on the EIG. Superficially,

the alphabetic criteria are simply functionals of the Gram matrix ξ>ξ, whilst the EIG is defined in terms

of posterior entropy. Fortunately, there is a point of close connection between the two for the Bayesian

linear model.
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Proposition 1.8 (Chaloner and Verdinelli (1995)). For a Bayesian linear model, Bayesian D-optimality

and EIG optimality are equivalent.

Proof. In the Bayesian linear model, the posterior on θ is Gaussian with covariance matrix that is

proportional to (ξ>ξ + Σ−1
0 )−1, and is independent of y. The entropy of this Gaussian posterior is

1
2 log det(ξ>ξ + Σ−1

0 )−1 + a constant. Substituting this into equation (1.13), the EIG for the Bayesian

linear model is

I(ξ) = 1
2 log det Σ0 − 1

2 log det(ξ>ξ + Σ−1
0 )−1 − const = − 1

2 log det(ξ>ξ + Σ−1
0 )−1 + const′. (1.34)

Thus, EIG optimality (maximise I(ξ)) and Bayesian D-optimality (minimise det(ξ>ξ+ Σ−1
0 )−1) lead to

the same optimal design.

Bayesian non-linear models

The ‘classical’ approach (Tsutakawa, 1972; Chaloner and Verdinelli, 1995) to generalising the alphabetic

criteria to non-linear Bayesian models is to consider the Fisher information matrix (FIM), which is

defined as

M(θ, ξ) = −Ep(y|θ,ξ)
[
∂2

∂θ2
log p(y|θ, ξ)

]
(1.35)

where ∂2/∂θ2 denotes the Hessian when θ is a vector. The FIM has two important properties that

motivate its use to extend the alphabetic criteria:

1. the FIM for the linear regression model is proportional to (ξ>ξ);

2. the inverse FIM is related to the asymptotic covariance matrix of the Bayesian posterior by the

Bernstein–von Mises Theorem (Van der Vaart, 2000).

For non-linear models, the FIM generally depends on θ as well as ξ, so forming a criterion for ξ involves

an integral over p(θ). For instance, Chaloner and Verdinelli (1995) gives a Bayesian non-linear version

of D-optimality as

UBayesian-D(θ, ξ) = log detM(θ, ξ)−1; (1.36)

substituting this utility in equation (1.9), leads to the optimality condition

ξ∗ = arg max
ξ

Ep(θ)[log detM(θ, ξ)−1]. (1.37)

Using the FIM is not the only way to generalise the alphabetic criteria to non-linear models. Indeed,

Ryan et al. (2016) takes issue with the classical FIM approach, suggesting that “to qualify as a ‘fully

Bayesian design’, one must obtain the design by using a design criterion that is a functional of the

posterior distribution”. Whilst the EIG satisfies this requirement, the FIM extensions of the alphabetic

criteria do not.
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An approach to generalising the alphabetic criteria that is consistent with Ryan’s definition of ‘fully

Bayesian’ is to look at the covariance matrix of the Bayesian posterior Covp(θ|y,ξ)[θ], which depends on ξ

and y and is a functional of the posterior. For example, Ryan et al. (2016) mention two scalar objectives

that can arise from this covariance matrix. One is termed the Bayesian D-posterior precision

UD-precision(ξ, y) =
1

det Covp(θ′|y,ξ)[θ′]
(1.38)

the other is quadratic loss

UQ(ξ, y, θ) = (θ − θ̂(y, ξ))>A(θ − θ̂(y, ξ)) (1.39)

for some matrix A and for some posterior functional estimate θ̂(y, ξ) of θ, such as the posterior mean.

Both can be applied in the general framework of equation (1.9).

1.4 Computational methods for one-step design

Choosing Bayesian-optimal experimental designs brings tremendous promise for obtaining information

more efficiently. The utilisation of this method, however, is practically limited by the difficulty of quickly

obtaining accurate estimates of the design criterion. This is particularly true of the EIG, and we focus

on computational methods for the EIG in this section. The mathematical problem that must be solved

to find the optimal design is the EIG maximisation problem

ξ∗ = arg max
ξ∈Ξ

I(ξ)

= arg max
ξ∈Ξ

Ep(y|ξ)
[
Ep(θ|ξ,y)[log p(θ|ξ, y)]− Ep(θ)[log p(θ)]

]
.

(1.40)

Note that here we are restricting ourselves to one-step experimental design, with sequential and adaptive

design being left to Sec. 1.8.

Computational methods for solving the EIG maximisation problem defined in equation (1.40) can gener-

ally be further broken down into two parts. First, they often make point estimates of the EIG criterion

at various candidate designs ξ. The difficulty of this estimation procedure can immediately be seen from

the definition of the EIG. It entails the calculation of the posterior entropy −Ep(θ|ξ,y)[log p(θ|ξ, y)]. For

large-scale Bayesian models, density estimation of the posterior constitutes a complex computational

task in of itself. However, for the EIG, the problem is more challenging because the posterior entropy oc-

curs inside an expectation Ep(y|ξ) over the observation y. Thus, a direct approach to estimating the EIG

amounts to nested estimation of potentially intractable posterior distributions. It is for this reason that

EIG estimation is sometimes referred to as a ‘double intractability’ (Foster et al., 2019). In Sec. 1.4.1,

we review methods that have been proposed for EIG estimation.

Second, there are still further difficulties in the problem of optimising the EIG objective function over

the space Ξ of possible designs. In the most naive methods, the optimisation simply adds an additional

layer of nesting onto the EIG estimation computations, with an outer optimiser searching over candidate
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designs and feeding them into the EIG estimation. Such optimisation procedures are generally best

suited for smaller problems; for larger ones, more sophisticated approaches to the optimisation of the

design have been studied. In Sec. 1.4.2 we review a range of techniques that have been proposed for this

optimisation.

Computational advances, both in the estimation and the optimisation of EIG, have significantly broad-

ened the range of Bayesian models and design spaces for which Bayesian experimental design is a realistic

possibility for practitioners.

1.4.1 Point estimates of EIG

The EIG, I(ξ), represents the expected reduction in Shannon entropy between the prior and posterior

(see Sec. 1.3.1). The first step in utilising EIG for experimental design is to compute an estimate of

the EIG for a single design ξ. Since I(ξ) = Ep(y|ξ) [H[p(θ)]−H[p(θ|ξ, y)]] involves an expectation over

y ∼ p(y|ξ) of the posterior entropy H[p(θ|y, ξ)], a direct approach to its estimation requires repeated

computations of the posterior p(θ|y, ξ) with different simulated observations y. Given that calculating

just one posterior can be intractable, it can readily be observed that EIG estimation is a computationally

challenging problem.

A critical distinction when computing the EIG is whether the model has an explicit or an implicit

likelihood (see Sec. 1.2.1 for a definition). In general, the explicit likelihood case contains strictly more

information about the model, and so results in an easier, yet still doubly intractable, computational

problem for the EIG. The implicit likelihood case is more challenging still, as the unknown likelihood

typically has to be estimated in some way. We review computational methods for EIG estimation in

both cases.

Explicit likelihood models

The existence of an explicit likelihood allows conventional approaches to posterior estimation, including

MCMC, importance sampling, and Laplace approximation, to be used. Each leads to a family of well-

studied approaches to EIG estimation. However, perhaps the most important computational methods are

those which side-step direct estimation of the posterior, focusing on estimates of the marginal likelihoods

p(y|ξ) only. The Nested Monte Carlo estimator (Ryan, 2003) is the canonical method in this class, and

been widely applied with a number of explicit likelihood models.

MCMC A natural approach that is mostly suited to low θ dimension problems, is to estimate the

posterior using Markov Chain Monte Carlo (MCMC) (Andrieu et al., 2003). Unfortunately, MCMC

only produces samples of the target density. This is problematic for EIG estimation, which also requires

access to the posterior density p(θ|ξ, y). To overcome this, Heinrich et al. (2020) used MCMC to sample

the posterior, and a Gaussian Mixture Model (Hastie et al., 2009, Sec. 6.8) to perform density estimation

of the posterior. MCMC has also been applied to estimate non-EIG criteria for Bayesian experimental
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design (Wakefield, 1994; Han and Chaloner, 2004).

Importance sampling Another family of methods for EIG estimation is based on importance sam-

pling. These methods begin with the key observation that estimating the posterior density is not actually

required for EIG estimation, because we can write

log
p(θ|ξ, y)

p(θ)
= log

p(y|θ, ξ)
p(y|ξ) . (1.41)

The approach of Cook et al. (2008); Ryan et al. (2014) is to estimate p(y|ξ) using Monte Carlo samples

from the prior, leading to the estimator

log p(y|ξ) ≈ log

(
1

N

N∑

n=1

p(y|θn, ξ)
)

where θ1, . . . , θN
i.i.d.∼ p(θ), (1.42)

the other component of the likelihood ratio p(y|θ, ξ)/p(y|ξ) is the known likelihood. Cook et al. (2008);

Ryan et al. (2014) then estimate Ep(θ|ξ,y)[log p(y|θ, ξ)] for some fixed y by using importance sampling.

Specifically, given some fixed y and the set of samples θ1, . . . , θn drawn independently of p(θ), they use

the estimator

Ep(θ|ξ,y)[log p(y|θ, ξ)] ≈ 1

N

N∑

n=1

p(y|θn, ξ)
1
N

∑N
p=1 p(y|θp, ξ)

log p(y|θn, ξ). (1.43)

The final estimator of EIG is formed by combining this estimator with the estimator in equation (1.42)

for log p(y|ξ), and then taking the Monte Carlo integral over y ∼ p(y|ξ), giving

I(ξ) ≈ 1

M

M∑

m=1

[
1

N

N∑

n=1

p(ym|θn, ξ)
1
N

∑N
p=1 p(ym|θp, ξ)

log p(ym|θn, ξ)− log

(
1

N

N∑

n=1

p(ym|θn, ξ)
)]

(1.44)

where y1 . . . , ym
i.i.d.∼ p(y|ξ) and θ1, . . . , θn

i.i.d.∼ p(θ) are independent.

Monte Carlo and Nested Monte Carlo Hamada et al. (2001); Ryan (2003) considered a closely

related family of estimators. They also used equation (1.41) to avoid computing posterior densities.

Unlike Cook et al. (2008); Ryan et al. (2014), they observed that p(y|ξ)p(θ|ξ, y) = p(θ)p(y|θ, ξ), allowing
them to write the EIG as

I(ξ) = Ep(θ)p(y|θ,ξ)
[
log

p(y|θ, ξ)
p(y|ξ)

]
. (1.45)

The only unknown quantity in the integrand here is p(y|ξ). Assuming some estimator p̂(y|ξ) for p(y|ξ),
we have the Monte Carlo estimator

I(ξ) ≈ 1

N

N∑

n=1

log
p(yn|θn, ξ)
p̂(yn|ξ)

where θn, yn
i.i.d.∼ p(θ)p(y|θ, ξ). (1.46)

In Hamada et al. (2001), p̂ was computed by numerical integration, for a low dimensional θ. In Ryan

(2003), two approaches for p̂ were considered—the first was a Laplacian approximation using the posterior

mode θ̂. The second was to use to an inner Monte Carlo estimation step to estimate p(y|ξ) as in
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equation (1.42). This latter approach, also considered by Myung et al. (2013); Rainforth (2017), results

in the double loop, or Nested Monte Carlo (NMC) estimator of EIG

ÎNMC(ξ) =
1

N

N∑

n=1

log
p(yn|θn, ξ)

1
M

∑M
m=1 p(yn|θ′m, ξ)

where θn, yn
i.i.d.∼ p(θ)p(y|θ, ξ), θ′m

i.i.d.∼ p(θ). (1.47)

The asymptotic properties of this estimator were studied by Rainforth et al. (2018); Zheng et al. (2018);

Beck et al. (2018), showing that ÎNMC(ξ) converges to I(ξ) with asymptotic error O
(√
N−1 + cM−2

)

in root mean square. Hence, it is optimal to set M ∝
√
N .

Laplace approximation Another important line of work (Lewi et al., 2009; Cavagnaro et al., 2010;

Long et al., 2013) uses a Laplace approximation to the posterior to estimate the posterior entropy. The

Laplace estimate uses the following Taylor expansion of a scalar function about a point θ̂

f(θ) ≈ f(θ̂) + (θ − θ̂)> ∂f

∂θ

∣∣∣∣
θ̂

+ (θ − θ̂)> ∂2f

∂θ2

∣∣∣∣
θ̂

(θ − θ̂). (1.48)

If we apply this approximation to the log posterior density f(θ) = log p(θ|ξ, y) = log p(θ)+log p(y|θ, ξ)+C

at a point θ̂ for which the log posterior density has zero gradient, then we find the following Gaussian

approximation

log p(θ|ξ, y) ≈ (θ − θ̂)>Σ̂−1(θ − θ̂) + C ′ where Σ̂−1 =
∂2 log (p(θ)p(y|θ, ξ))

∂θ2

∣∣∣∣
θ̂

. (1.49)

One advantage of this approach is that the entropy of this Gaussian approximation is known in closed

form. A drawback is that the Laplace approximation makes a strong structural assumption about the

posterior. This was partially relaxed by Long (2021), who considered a multi-modal Laplace approxima-

tion. Another approach is to combine Laplace estimation and importance sampling (Ryan et al., 2015).

Finally, Beck et al. (2018) analysed the standard Laplace estimator, and further proposed combining

Laplace importance sampling with the NMC estimator.

Implicit likelihood models

When the likelihood is not available, EIG estimation is strictly more difficult than when the likelihood is

known in closed form. A direct approach to re-use explicit likelihood EIG estimators is to approximate

the likelihood, and use this surrogate approximation as if it were the true likelihood. Alternatively,

authors have focused on existing methods for likelihood-free inference, which give posterior estimates for

implicit likelihood models without requiring knowledge of the likelihood.

Approximating the likelihood In some models, the likelihood p(y|θ, ξ) can be computed, but it

is too expensive to be used in extensive calculation. The approach of Huan and Marzouk (2013) is to

approximate the likelihood using a polynomial chaos expansion. Here, it is necessary to use a small

number of evaluations of the likelihood to compute the polynomial chaos coefficients, but once this is
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done, the surrogate polynomial chaos approximate likelihood can be used in place of the true likelihood

for all other calculations. Huan and Marzouk (2013) specifically use the polynomial chaos approximation

within a NMC estimator of the EIG.

Overstall and McGree (2020) also consider approximating the likelihood. They assume a parametric

family for distributions over y with parameters φ, so that y|θ, ξ ∼ HX(φf (θ, ξ)). They estimate the

function φf (θ, ξ) using a Gaussian Process (Williams and Rasmussen, 2006), trained with data obtained

by maximum likelihood estimation of φf . We note the close connections between this idea and Foster

et al. (2019).

Approximate Bayesian Computation Approximate Bayesian Computation (ABC) (Csilléry et al.,

2010) is a family of methods for performing inference without a tractable likelihood. In its simplest form,

ABC simulates (θ̃i, ỹi)
N
i=1 from the joint model p(θ, y|ξ). Given a metric ρ on Y, a sample θ̃i is accepted

as a valid sample from p(θ|ξ, y) if

ρ(y, ỹi) < ε (1.50)

for tolerance ε. Drovandi and Pettitt (2013), Hainy et al. (2016), Price et al. (2016) and Dehideniya

et al. (2018) have applied ABC within the context of Bayesian experimental design.

LFIRE Another more recent approach to inference in intractable likelihood models is Likelihood-free

Inference by Ratio Estimation (LFIRE) (Thomas et al., 2016). This method uses logistic regression to

approximate the likelihood ratio

r(ξ, θ, y) =
p(y|θ, ξ)
p(y|ξ) . (1.51)

Importantly, this ratio is exactly the likelihood ratio that appears in the definition of the EIG, indeed

we have I(ξ) = Ep(y|ξ)p(θ|ξ,y)[log r(ξ, θ, y)] = Ep(θ)p(y|θ,ξ)[log r(ξ, θ, y)]. Thus, if we are able to estimate

r(ξ, θ, y) accurately, then EIG estimation can be performed by simple Monte Carlo integration. On

this basis, LFIRE was applied in a Bayesian experimental design context by Kleinegesse and Gutmann

(2018). They sampled (θi, yi)
N
i=1 from the joint model p(θ)p(y|θ, ξ). For each θi, they trained a logistic

regression model to distinguish samples from p(y|θi, ξ) and p(y|ξ). This results in an estimate r̂(ξ, θi, y)

of r(ξ, θi, y) across different values of y. Finally, they form the Monte Carlo estimate of the EIG

I(ξ) ≈ 1

N

N∑

i=1

log r̂(ξ, θi, yi). (1.52)

1.4.2 Optimisation of EIG

We now turn to the problem of optimising the EIG over the design space Ξ. The simpler methods

to perform this optimisation use point estimates of EIG. For finite Ξ, we can estimate EIG for every

design. For infinite Ξ, we can use the EIG estimates at some design points to try and infer the EIG

at others. Most simply, this could take the form of fitting a regression model to predict I(ξ) from ξ.

More advanced methods use Bayesian optimisation—this both fits a Bayesian regression model of this
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form and uses Bayesian uncertainty estimates to propose new designs at which to compute the EIG.

Another branch of thinking folds the EIG optimisation problem back into the problem of sampling from

an unnormalised density. In this approach, the unnormalised density in question places high mass where

the utility U(θ, ξ, y) is high. All aforementioned approaches are zeroth order methods—they do not make

use of derivatives of U(θ, ξ, y). Using gradient information, albeit approximate, leads to a class of first

order methods for EIG optimisation.

Discrete design space

For a small, discrete design space, the simplest option is to form separate estimates of I(ξ) for each ξ ∈ Ξ,

and choose the design with the highest estimated EIG. This approach was taken by Carlin et al. (1998);

Palmer and Müller (1998) and others. Vincent and Rainforth (2017) dynamically allocated resources

between different discrete designs using ideas from the theory of bandit optimisation (Neufeld et al.,

2014). In essence, this approach provides more accurate EIG estimates for designs that are likely to be

optimal, spending less time on designs that are not promising.

Continuous design space

Discretisation Perhaps the simplest approach to continuous design optimisation is to discretise the

design space, for example using uniformly or log-uniformly spaced points (Ryan, 2003; van den Berg et al.,

2003; Watson, 2017; Vincent and Rainforth, 2017). Alternatively, a discrete set of candidate designs can

be chosen by hand by the experimenter, and each evaluated (Han and Chaloner, 2004; Terejanu et al.,

2012; Lyu et al., 2019).

Curve fitting Given a finite set of randomly sampled designs ξi with EIG estimates Î(ξi), Müller

and Parmigiani (1995) proposed a curve fitting approach that fits a regression model to this data. The

optimal design is then estimated as the optimum of the fitted regression model.

Bayesian optimisation Beyond simple curve fitting, Bayesian Optimisation (BO) (Snoek et al., 2012)

is a well-established method for gradient-free optimisation. Like any other curve fitting approach, BO

fits a model, specifically a Gaussian Process (GP), (Williams and Rasmussen, 2006) to the observed

data (ξi, Î(ξi)). However, BO iteratively suggests new designs at which to estimate the EIG, in order to

efficiently seek the optimal design. We fully discuss BO and its connection with Bayesian experimental

design itself in Sec. 1.7. For the purposes of solving the EIG optimisation problem, equation (1.40), we

treat BO as a black box optimisation algorithm. The application of BO to optimising EIG over the

design space was explored by Kleinegesse and Gutmann (2018); Foster et al. (2019); von Kügelgen et al.

(2019).

Co-ordinate exchange The classical co-ordinate exchange algorithm for optimising design was pro-

posed by Meyer and Nachtsheim (1995). Overstall and Woods (2017) proposed Approximate Co-ordinate
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Exchange. This is a two phase optimisation algorithm specifically designed for Bayesian experimental

design. In the first phase, designs are optimised co-ordinate-wise by fitting a one-dimensional GP to

the EIG surface for each co-ordinate in turn, with other elements of the design held fixed, and selecting

the optimal value for that co-ordinate. In the second phase, different co-ordinates of the design are

aggregated using a point exchange algorithm (Meyer and Nachtsheim, 1995; Atkinson et al., 2007).

Optimisation by sampling Clyde et al. (1996) proposed an approach to optimising the design that

uses algorithms for sampling unnormalised densities. Their approach applies to any utility U(θ, ξ, y) > 0

in the framework of equation (1.9). The authors define an augmented probability model on Ξ × Θ × Y
by

h(ξ, θ, y) ∝ p(θ)p(y|θ, ξ)U(θ, ξ, y). (1.53)

The marginal distribution for ξ is then

h(ξ) ∝ Ep(θ)p(y|θ,ξ)[U(θ, ξ, y)], (1.54)

this guarantees that high probability regions for ξ correspond to regions with a large utility. The core

approach, then, is to sample from the joint density h(ξ, θ, y) using a technique such as MCMC—Clyde

et al. (1996) used the Metropolis–Hastings algorithm (Hastings, 1970). MCMC on h(θ, ξ, y) was also

used by Bielza et al. (1999); Müller (2005). Cook et al. (2008); Drovandi and Pettitt (2013) used the

MCMC technique, and fitted a density estimator to the MCMC samples to improve their estimation of

the optimal design. Ryan et al. (2014) applied MCMC in combination with dimensionality reduction on

the latent space to avoid problems with MCMC in higher dimensions.

An extension of this idea, inspired by simulated annealing (Van Laarhoven and Aarts, 1987), is to include

the utility contributions from J independent (θ, y) pairs, to create an unnormalised density on Ξ×ΘJ×YJ

hJ(ξ, θ1:J , y1:J) =

J∏

j=1

p(θj)p(yj |θj , ξ)U(θj , ξ, yj). (1.55)

One can see that for larger J , the probability mass concentrates more strongly around the optimal ξ.

The simulated annealing mechanism is applied by increasing J during the course of optimisation. This

approach has been applied by Müller et al. (2004); Müller (2005); Stroud et al. (2001); Cook et al. (2008).

Alternatively, one can sample hJ(ξ, θ1:J , y1:J) using Sequential Monte Carlo (SMC) (Doucet et al., 2000).

This was the approach taken by Amzal et al. (2006); Kuck et al. (2006).

Evolutionary algorithms Another approach to solving equation (1.40) is to optimise over the design

space using evolutionary algorithms (Eiben et al., 2003). Hamada et al. (2001) applied genetic algorithms

to this problem, and Price et al. (2018) proposed the Induced Natural Selection Heuristic (INSH) method

to optimise the design.
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Gradient-based optimisation Whilst gradient-driven optimisation methods are commonplace in op-

timisation theory, their adoption in Bayesian experimental design has been limited. This is likely because,

as with the EIG itself, estimating the gradient ∇ξI is a computationally challenging problem, and it is

rare that we can place a guarantee of accuracy on EIG gradient estimates. Standard stepwise optimi-

sation methods are relatively data hungry, requiring the estimate of gradients at many design points.

Given these challenges, approaches such as Bayesian optimisation, which emphasises optimisation with

limited, expensive evaluations of the underlying objective function, predominate.

Nevertheless, Huan and Marzouk (2014) considered gradient-based methods for solving the EIG optimi-

sation problem. They considered the Robbins–Monroe stochastic gradient descent (SGD) (Robbins and

Monro, 1951) algorithm applied to the NMC estimator of the EIG, equation (1.47), resampling θn, yn

and θ′m at each iteration. This leads to a gradient descent method with noisy and biased gradients.

They also considered applying the SAA-BFGS algorithm (Fletcher, 2013) to the NMC estimator, with-

out resampling at each iteration. Carlon et al. (2020) considered gradient optimisation of both NMC

and Laplace estimators of the EIG using SGD.

Note: At the time of writing Chapter 3, we were not aware of the work of Huan and Marzouk (2014).

This is an important piece of prior work for this chapter, which also deals with the stochastic gradient

optimisation of the EIG. We regret the omission. The key distinctions between Chapter 3 and Huan and

Marzouk (2014) are 1) the use of EIG lower bounds as surrogate differentiable objectives by the former

as compared to the NMC surrogate used by the latter, 2) the simultaneous optimisation of a variational

parameter to produce more accurate estimates of ∇ξI of the former.

Other methods Huan and Marzouk (2013) proposed the Nelder–Mead simplex method (Nelder and

Mead, 1965), a gradient-free optimisation algorithm, and simultaneous perturbation stochastic approxi-

mation (Spall, 1998) as two alternative optimisation algorithms for Bayesian experimental designs.

1.5 Bayesian Active Learning

Active learning allows a learning algorithm to “choose the data from which it learns” (Settles, 2009).

In the Bayesian setting, the learning algorithm is a Bayesian model. In its most abstract form, then,

Bayesian Active Learning is identical to Bayesian Experimental Design, but with different vocabulary:

designs ξ are referred to as queries, observations y are referred to as labels and are often provided by

a human labeller, the design criterion is referred to as the acquisition function. Queries are selected to

maximise the acquisition function, typically in an iterative process.

Pool-based active learning However, this abstract similarity disguises the common differences in

applications of active learning and experimental design. One hugely important sub-field of active learning,

including Bayesian active learning, is pool-based active learning (Lewis and Gale, 1994). Here, the design

space Ξ consists of unlabelled examples (such as images or sentences), the observation y is a human-
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Algorithm 1 Pool-based Bayesian active learning with greedy acquisition

Require: Acquisition function α, prior p(θ) on model weights, pool Ξ, initial dataset D0 may be empty.
for step t = 1, . . . , T do

Find ξt = arg maxξ∈Ξ α(ξ;Dt−1) by scoring each unlabelled element of the pool
Obtain label yt for query ξt
Set Dt = Dt−1 ∪ {(ξt, yt)} and retrain model to compute p(θ|Dt)

end for

provided label that corresponds to the unlabelled instance ξ, and the model is a classifier with parameters

θ that predicts y from ξ. Pool-based active learning also applies less commonly to regression problems,

for which y is a continuous label.

Sequential active learning with greedy acquisition In Sections 1.3 and 1.4, we focused on one-

step design in which we begin with a prior p(θ), select a design ξ, obtain outcome y, and the experiment

terminates. In active learning, we rarely want to acquire just one label or one batch of labels—the true

power of the framework is apparent in a sequential setting (Lewis and Gale, 1994). This means that we

pick design ξ1 obtaining label y1, then choose ξ2 and receive label y2, and so on. The dataset that we

have after t experiments is Dt = {(ξ1, y1), . . . , (ξt, yt)}. A simple approach to the sequential problem that

is adopted in almost all of active learning (Gal et al., 2017) is greedy acquisition. In short, this strategy

picks the next design to maximise the utility of the next label, without any consideration of how this

will affect future queries.

However, it is still essential to incorporate all existing data Dt into the model before making this choice.

To do this, we use the posterior3 given existing data p(θ|Dt) in place of the original prior p(θ). For the

EIG, for example, at each step we would choose the design that maximises

I(ξ;Dt) = Ep(y|ξ,Dt)

[
Ep(θ|ξ,y,Dt)[log p(θ|ξ, y,Dt)]− Ep(θ|Dt)[log p(θ|Dt)]

]
(1.56)

where p(y|ξ,Dt) = Ep(θ|Dt)[p(y|θ, ξ)]. The high-level framework of greedy, sequential pool-based Bayesian

active learning with a general acquisition function α is summarised in Algorithm 1. We discuss the theory

of sequential experimentation in more detail in Sec. 1.8.

1.5.1 Acquisition functions

Bayesian Active Learning by Disagreement

A key point of intersection between Bayesian active learning and Bayesian experimental design is the

Bayesian Active Learning by Disagreement (BALD) score (Houlsby et al., 2011), a widely adopted

acquisition function within Bayesian Active Learning.

Proposition 1.9 (Houlsby et al. (2011)). The BALD score is equivalent to the EIG.
3In active learning, we make the assumption that θ represents the full set of model parameters (see Sec. 1.6).
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Proof. The BALD score is the mutual information between θ and y, but typically rearranged as

αBALD(ξ;Dt) = Ep(θ|Dt) [H[p(y|ξ,Dt)]−H[p(y|ξ, θ,Dt)]] . (1.57)

We have

= Ep(θ|Dt)

[
−Ep(y|ξ,Dt)[log p(y|ξ,Dt)] + Ep(y|ξ,θ,Dt)[log p(y|ξ, θ,Dt)]

]
(1.58)

= Ep(θ|Dt)p(y|ξ,θ,Dt) [− log p(y|ξ,Dt) + log p(y|ξ, θ,Dt)] (1.59)

= Ep(θ|Dt)p(y|ξ,θ,Dt)

[
log

p(y|ξ, θ,Dt)
p(y|ξ,Dt)

]
(1.60)

applying Bayes Theorem gives

= Ep(θ|Dt)p(y|ξ,θ,Dt)

[
log

p(θ|ξ, y,Dt)
p(θ|Dt)

]
(1.61)

= Ep(y|ξ,Dt)

[
Ep(θ|ξ,y,Dt)[log p(θ|ξ, y,Dt)]− Ep(θ|Dt)[log p(θ|Dt)]

]
= I(ξ;Dt). (1.62)

Note this is essentially the same proof as Proposition 1.6.

The BALD score can be utilised directly in Algorithm 1. One important feature of writing EIG in BALD

form is that it only depends on the actual experimental observation y, and does not require a probability

density on θ. This can be important if we do not have a closed form density for θ either in the prior

p(θ) or in the posterior p(θ|Dt). This is particularly useful in active learning, where we may consider

particularly complex models with high-dimensional θ.

In Deep Bayesian Active Learning (Gal et al., 2017), for instance, the model that predicts y from ξ

is a neural network with parameters θ. In order to treat this model in a Bayesian manner, methods

for Bayesian deep learning must be utilised. Gal et al. (2017) specifically used Dropout as a way of

estimating prior and posterior distributions on θ (Gal and Ghahramani, 2016). Here, fitting p(θ|Dt)
amounts to retraining the network with Dropout. Beluch et al. (2018) and Pop and Fulop (2018) used a

simple ensemble of models, treating different members of the ensemble as posterior samples of θ. To fit

p(θ|Dt), each deterministic model in the ensemble is retrained separately.

A key computational insight when estimating I(ξ) for a classification model in which the observation

space Y is finite was made by Houlsby et al. (2011); Gal et al. (2017). We have

I(ξ) =
∑

y∈Y
Ep(θ)

[
p(y|θ, ξ) log

p(y|θ, ξ)
Ep(θ)[p(y|θ, ξ)]

]
(1.63)

which can simply be estimated with Monte Carlo using samples θ1, . . . , θN ∼ p(θ). The same idea

applied when we have p(θ|Dt) in place of p(θ). This estimator was also used by Vincent and Rainforth

(2017), who observed that, unlike the NMC estimator of equation (1.47), this estimator converges at the

standard Monte Carlo rate with error O(N−1/2). This speed-up is a consequence of being able to sum
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over Y.

BatchBALD In the pool-based active learning setting with a discrete pool of size p, each acquisition

involves computing the BALD score for every element of the pool and choosing the best one (Algorithm 1),

which is an O(p) operation. Kirsch et al. (2019) considered the problem of batch active learning, in

which designs are k-subsets of the pool. This means that, at each iteration of active learning, k different

unlabelled examples will be selected and labelled. Naively scoring each k-subset of the unlabelled pool

costs
(
p
k

)
, which rapidly becomes prohibitive. BatchBALD instead creates the design by greedily adding

elements from the pool one at a time, giving a more efficiently scalable algorithm. This approach can be

justified theoretically using the notion of submodularity—see Sec. 1.8.1.

Other acquisition functions

Within the Bayesian active learning framework, a range of other acquisition functions and computational

methods have been proposed. It is possible to extend most common non-Bayesian acquisition functions

for use with Bayesian models. These non-Bayesian acquisition rules are generally a function of the

predictive distribution p(y|ξ,Dt). When using a Bayesian model we can use the Bayesian marginal

(posterior predictive) p(y|ξ,Dt) = Ep(θ|Dt)[p(y|θ, ξ)] in place of the deterministic predictive distribution

that arises in non-Bayesian models. Standard acquisition functions such as uncertainty sampling (Lewis

and Gale, 1994), margin sampling (Scheffer et al., 2001), and variation ratios (Freeman, 1965) can be

therefore be employed in this context. Of particular note is the maximum entropy sampling method

(Shannon, 1948; Settles and Craven, 2008), which uses

αEntropy(ξ;Dt) = H[p(y|ξ,Dt)]. (1.64)

As shown in Proposition 1.6, this approach is equivalent to EIG maximisation when the entropyH[p(y|θ, ξ)]
does not depend on ξ. This can be interpreted as saying that, given the correct model, the level of noise

is uniform across all examples in the pool Ξ. For instance, we could assume that every example has a

true label that a human will assign with 100% accuracy. However, maximum entropy sampling (and,

in general, rules based on uncertainty in the predictive distribution p(y|ξ,Dt)) break down when there

are designs ξ which are very ambiguous, e.g. the correct label is missing from the taxonomy. Maximum

entropy and related acquisition rules can become fixated on ambiguous queries.

Active learning has also considered Bayesian-specific acquisition functions. Kendall et al. (2015) proposed

the mean standard deviation (Mean STD) acquisition rule for classification models. Define σy(ξ;Dt) as

the standard deviation over θ|Dt of the probability of example ξ being assigned to class y, i.e.

σy(ξ;Dt) =
√

Varp(θ|Dt)[p(y|θ, ξ)], (1.65)
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then the MeanSTD acquisition function is,

αMeanSTD(ξ;Dt) =
1

|Y|
∑

y∈Y
σy(ξ;Dt). (1.66)

Following Bayesian decision theory, Roy and McCallum (2001) considered minimising the Bayes posterior

risk, focusing on log loss and 0/1 loss. Kapoor et al. (2007) considered a range of Bayesian acquisition

functions for binary classification, focusing on a score which combines the mean and variance of the

prediction. Yang et al. (2012) applied Bayesian active learning to metric learning, and used an acquisition

function based on maximum entropy.

1.6 Embedded models

So far, we have assumed that θ the parameters of interest, and the full set of model parameters, are one

and the same. In this section, we explore the case in which the parameters of interest and the full set

of model parameters are different. Model selection (Vanlier et al., 2014; Drovandi et al., 2014), in which

we are only interesting in deciding which model is correct and not interested in learning the exact model

parameters, is one important example of this setting. Bayesian optimisation (Sec. 1.7) is also an example

in which we have a probability model for an unknown function, but we are only interest in learning the

location of the maximum of that function.

For this more general case, we assume that the model is fully specified by a set of parameters ψ, and that

our parameters of interest θ are a stochastic function of the full parameter set θ ∼ p(θ|ψ). Note that

this includes the case in which θ is a deterministic function of ψ. In this case, the full joint distribution

of the model is p(ψ, θ, y|ξ), and we obtain a joint over Θ× Y by integrating

p(θ, y|ξ) =

∫
p(ψ, θ, y|ξ) dψ. (1.67)

Semi-implicit likelihood The embedded model setting allows us to extend our discussion of explicit

and implicit models (Sec. 1.2.1). It could be the case that we do have an explicit prior for ψ and an

explicit likelihood p(y|ψ, ξ) for the observation y given the full set of parameters ψ. Then the prior

distribution on θ is given by

p(θ) =

∫
p(ψ)p(θ|ψ) dψ. (1.68)

The likelihood p(y|θ, ξ) can then be computed via Bayes’ Rule

p(y|θ, ξ) =
p(θ, y|ξ)
p(θ)

=

∫
p(ψ)p(θ|ψ)p(y|ψ, ξ) dψ∫

p(ψ)p(θ|ψ) dψ
=

∫
p(ψ|θ)p(y|ψ, ξ) dψ. (1.69)

Computing one or both of the necessary integrals may be an intractable computation. We use the term

semi-implicit for this case in which the likelihood or prior for ψ is explicit, but the likelihood or prior for

θ involves an intractable integral. So a semi-implicit likelihood is one which is formed as an integral of
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an explicit likelihood p(y|ψ, ξ) and a semi-implicit prior is one which is an integral of explicit prior p(ψ).

Semi-implicit likelihood with independent priors A special case of the preceding discussion arises

when ψ = (θ, z) with p(ψ) = p(θ)p(z) and a deterministic p(θ|ψ). In this setting, ψ is partitioned into

the parameters of interest and an independent nuisance parameter z. This allows us to simplify the

expression for the semi-implicit likelihood by cancelling p(θ) as follows

p(y|θ, ξ) =

∫
p(z)p(y|θ, z, ξ) dz. (1.70)

Exchangeability In an exchangeable embedded model, it is no longer true that different experiments

are independent conditional on θ. Intuitively, the reason for this is that one experiment gives us in-

formation about all of ψ. Without extra assumptions, information from the first experiment tells us

something about ψ even when we condition on θ, and this influences the predictive distribution for the

second experiment. More formally, the factorisation equation (1.3) must be replaced by a factorisation

conditional on ψ, and the natural assumption to make is that experiments are independent conditional

on ψ

p(ψ, y1:T |ξ1:T ) = p(ψ)

T∏

t=1

p(yt|ψ, ξt). (1.71)

Sequential learning with greedy acquisition One of the consequences of equation (1.71) is that

Algorithm 1 is not quite correct for an embedded model. Specifically, between iterations, it is necessary

to update the full model on ψ by fitting p(ψ|Dt), it is not enough to update beliefs about θ.

1.6.1 Expected Information Gain for embedded models

The EIG can naturally extend to the case of embedded models. The definition of information gain on

the parameter of interest θ remains the same: UI(ξ, y) = Ep(θ|ξ,y)[log p(θ|y, ξ)] − Ep(θ)[log p(θ)]. When

we take the expectation over y, however, we use the Bayesian marginal that integrates over all of ψ,

i.e. p(y|ξ) = Ep(ψ)[p(y|ψ, ξ)], to give

I(ξ) = Ep(ψ)p(θ|ψ)p(y|ψ,ξ)

[
log

p(θ|y, ξ)
p(θ)

]
. (1.72)

The EIG in an embedded model can also be expressed in BALD form (Proposition 1.9) as

I(ξ) = H[p(y|ξ)]− Ep(θ)[H[p(y|θ, ξ)]] (1.73)

= H
[
Ep(ψ)[p(y|ψ, ξ)]

]
− Ep(ψ)p(θ|ψ)[H[Ep(ψ′|θ)[p(y|ψ′, ξ)]]], (1.74)

where the second line emphasises the difference with the standard case.
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1.6.2 Computational methods for semi-implicit likelihood models

The NMC estimator of the EIG (Ryan, 2003) can be extended to the semi-implicit case. The central

idea is that we form a Monte Carlo estimator of both p(y|θ, ξ) and p(y|ξ) using appropriate Monte Carlo

integrals over ψ. As in the standard NMC estimator, we have

p(y|ξ) = Ep(ψ)[p(y|ψ, ξ)] ≈
1

M

M∑

m=1

p(y|ψm, ξ) where ψ1, . . . , ψM
i.i.d.∼ p(ψ). (1.75)

For p(y|θ, ξ), we need access to samples from the distribution p(ψ|θ). Then,

p(y|θ, ξ) = Ep(ψ|θ)[p(y|ψ, ξ)] ≈
1

M

M∑

m=1

p(y|ψm, ξ) where ψ1, . . . , ψM
i.i.d.∼ p(ψ|θ). (1.76)

Combining, we have the semi-implicit NMC estimator of EIG

ÎSI-NMC(ξ) =
1

N

N∑

n=1

[
log

(
1

M

M∑

m=1

p(yn|ψnm, ξ)
)
− log

(
1

M

M∑

m=1

p(yn|ψm, ξ)
)]

(1.77)

where θn, yn
i.i.d.∼ p(θ, y|ξ), ψm i.i.d.∼ p(ψ) and ψnm

i.i.d.∼ p(ψ|θn).

Ma et al. (2018) considered information acquisition for imputation in a semi-implicit setting. They used

a Partial VAE which facilitated estimation of the EIG using the conditional independence assumptions of

the model. Extending this, Gong et al. (2019) considered a similar active imputation scenario. They used

ÎSI-NMC(ξ) to estimate an information criterion for experimental design. In their probabilistic model,

they had ψ = (θ, z) with p(ψ) = p(θ)p(z). When conditioning on data Dt, they used approximate

inference in which the independence of θ and z was maintained. Under these conditions, sampling p(ψ|θ)
amounted to fixing θ and taking new, independent samples of z. A simplified form of their estimator is

ÎIcebreaker(ξ) =
1

N

N∑

n=1

[
log

(
1

M

M∑

m=1

p(yn|θn, zm, ξ)
)
− log

(
1

ML

M∑

m=1

L∑

`=1

p(yn|θ`, zm, ξ)
)]

(1.78)

where θn, yn
i.i.d.∼ p(θ, y|ξ), zm i.i.d.∼ p(z) and θ′`

i.i.d.∼ p(θ). Overstall and Woods (2017) considered almost

the same setting when estimating the EIG utility. Specifically, they considered a semi-implicit case in

which ψ can be partitioned into parameters of interest and independent nuisance parameters, and used

this semi-implicit NMC estimator for the EIG.

1.7 Bayesian Optimisation

Bayesian optimisation (BO) (Snoek et al., 2012; Shahriari et al., 2015) considers the problem of finding

the maximiser of an unknown objective function

ξ∗ = arg max
ξ∈Ξ

f(ξ). (1.79)
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To deal with the unknown function in a Bayesian manner, we consider a statistical model for f with

prior p(f). We assume that we can obtain relatively expensive measurements from the true function f at

design points ξ. These measurements may be corrupted by noise, meaning that we obtain observations

y|ξ, f ∼ p(y|f(ξ)), (1.80)

for example, y = f(ξ) + ε for ε ∼ N(0, σ2).

BO can naturally be cast within the framework of Bayesian experimental design. We have designs ξ

and observations y connected by the Bayesian model on f and the noise model. The missing piece is to

specify the parameter of interest θ. The parameter of interest is not f , because Bayesian optimisation

is explicitly concerned with maximising f , meaning that any information about f in regions where it is

well below its maximum is not useful. The most common formulation is to take to be the location of the

maximiser of f (Hernández-Lobato et al., 2014), i.e. θ = arg maxξ∈Ξ f(ξ). The fact that θ is not all of f

means that BO is not an explicit likelihood (Sec. 1.2.1) experimental design problem, nor does it fit into

the framework of Bayesian active learning (Sec. 1.5). BO is experimental design for an embedded model

(Sec. 1.6), with the function f playing the role of the richer parameter set ψ. We will see that BO has

its own character with a wide range of algorithms that apply specifically to the optimisation problem.

To set up a BO system, we begin by specifying a Bayesian model for f with prior p(f), and a measurement

noise model p(y|f(ξ)). We then specify an acquisition function that guides our choice of designs at which

we should take measurements. The acquisition function in BO plays the same role as the design criterion

in Bayesian experimental design and the acquisition function in active learning—we select the design

that maximises the acquisition function to obtain new measurements of f . As in active learning, BO

typically adopts the greedy acquisition approach that was outlined in Sec. 1.5. The entire approach is

summarised in Algorithm 2.

We begin by discussing common choices for the Bayesian model and acquisition function in BO. We focus

specifically on the Entropy Search family of acquisition rules, highlighting the connection to experimental

design with EIG.

1.7.1 Bayesian models for optimisation

Parametric models

When the design space Ξ is discrete, the function f can be characterised by a finite number of latent

variables. This case is closely connected to theory of multi-armed bandits (Lai and Robbins, 1985):

we can view each ξ ∈ Ξ as an ‘arm’ of a bandit in a casino. Each arm has an unknown payout, and

the aim is to identify the best arm. Our mathematical set-up specifically relates the pure exploration

scenario (Bubeck et al., 2009), in which final knowledge of the location of the best arm is important, but

function evaluations during the course of Algorithm 2 are not. Finite-dimensional models such as the

Beta-Bernoulli (Shahriari et al., 2015) and the Gaussian (Hoffman et al., 2014) have been applied in the
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Algorithm 2 Bayesian Optimisation (Shahriari et al., 2015)

Require: Acquisition function α, prior p(f) on function, design space Ξ, initial dataset D0 may be
empty.
for step t = 1, . . . , T do

Find ξt = arg maxξ∈Ξ α(ξ;Dt−1)
Obtain noisy measurement yt ∼ p(y|f(ξt)) at design ξt
Set Dt = Dt−1 ∪ {(ξt, yt)} and retrain the model to compute p(f |Dt)

end for
Use p(f |DT ) to estimate the maximiser of f .

bandit context.

Both Bayesian linear and generalised linear models have been utilised within the Bayesian optimisation

context (Russo and Van Roy, 2014; Shahriari et al., 2015). In the bandit context, these models are

applied by associating each bandit arm with a feature vector xξ, and assuming that the arm payout

depends on this feature vector. For a linear model, for example, we would assume f(ξ) = 〈xξ,w〉. These
models can also be applied to optimisation over continuous design spaces. Snoek et al. (2015) considered

Bayesian optimisation using a Bayesian neural network as the model for f ; they specifically took an

‘adaptive basis regression’ approach that is only Bayesian on the last layer of the network.

Nonparametric models

For continuous Bayesian optimisation, the Gaussian Process (GP) (Williams and Rasmussen, 2006) has

proved an extremely popular Bayesian nonparametric model for the unknown function f (Osborne et al.,

2009). The Gaussian process with a positive definite kernel k and mean function µ assumes the following

multivariate Gaussian distribution for the finite-dimensional marginal distributions (Øksendal, 2003) of

f 


f(ξ1)
...

f(ξn)


 ∼ N







µ(ξ1)
...

µ(ξn)


 ,




k(ξ1, ξ1) . . . k(ξ1, ξn)
...

...

k(ξn, ξ1) . . . k(ξn, ξn)





 . (1.81)

Given a dataset of observations Dt = {(ξi, yi)}ti=1, the resulting posterior on f is also a Gaussian process.

The mean and covariance structure of the posterior can be derived by computing the conditional form

of equation (1.81), however, the necessary matrix computations come at cubic cost O(t3); we refer to

Williams and Rasmussen (2006) for full details. As a mark of its popularity, BO with a GP model for f

has been implemented in several software frameworks, such as BoTorch (Balandat et al., 2020).

Within Bayesian optimisation, several extensions of the GP have also been considered as models for f .

Different variants of sparse GPs have been proposed (Quinonero-Candela and Rasmussen, 2005; Snelson

and Ghahramani, 2006; Lázaro-Gredilla et al., 2010), aiming to reduce the computational burden of

using the standard GP conditioning formula. Calandra et al. (2016) combined GPs with feature learning

to propose the Manifold GP.

Beyond the GP family, Hutter et al. (2013) also considered a random forest model for f , but found GPs

to be preferable. Focusing on the application of hyperparameter optimisation, Bergstra et al. (2011)
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proposed the Tree-structured Parzen Estimator model for f that combines a tree-structured hierarchy

with mixture modelling. Finally, Neiswanger et al. (2019) considered Bayesian optimisation in which an

arbitrary probabilistic program is used as the model for f .

1.7.2 Acquisition functions

The Entropy Search family

To define an information-theoretic acquisition function for Bayesian optimisation, we want to gain infor-

mation about the random variable θ = arg maxξ∈Ξ f(ξ). To this end, Villemonteix et al. (2009) proposed

Stepwise Uncertainty Reduction (SUR). This method aims to reduce posterior entropy in θ using the

acquisition rule

αSUR(ξ;Dt) := −Ep(y|ξ,Dt)[H[p(θ|Dt ∪ {(ξ, y)})]]. (1.82)

where p(y|ξ,Dt) = Ep(f |Dt)[p(y|f(ξ))]. In practice, Villemonteix et al. (2009) estimated the acquisition

function by discretising θ and using a GP model for f . Hennig and Schuler (2012) considered a closely

related acquisition function called Entropy Search (ES) that maximises the KL-divergence between the

posterior on θ and a base measure b(θ). This gives the acquisition function

αES(ξ;Dt) := Ep(y|ξ,Dt)[KL[p(θ|Dt ∪ {(ξ, y)})‖b(θ)]]. (1.83)

The following Proposition, due to MacKay (1992), shows that these in information measures are equiv-

alent, and are equivalent to the EIG.

Proposition 1.10 (MacKay (1992)). Consider the general experimental design set-up of Sec. 1.3. The

following acquisition functions all give the same optimal design

I(ξ) = Ep(y|ξ)
[
Ep(θ|ξ,y)[log p(θ|ξ, y)]− Ep(θ)[log p(θ)]

]
, (1.84)

I2(ξ) = −Ep(y|ξ)[H[p(θ|ξ, y)]], (1.85)

I3(ξ) = Ep(y|ξ)[KL[p(θ|ξ, y)‖b(θ)]] (1.86)

where p(y|ξ) = Ep(f)[p(y|f(ξ))].

Proof. We have

I(ξ) = Ep(y|ξ)
[
Ep(θ|ξ,y)[log p(θ|ξ, y)]− Ep(θ)[log p(θ)]

]
(1.87)

= Ep(y|ξ)[−H[p(θ|ξ, y)] +H[p(θ)]] (1.88)

= I2(ξ) +H[p(θ)]. (1.89)
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and

I(ξ) = Ep(y|ξ)
[
Ep(θ|ξ,y)[log p(θ|ξ, y)]− Ep(θ)[log p(θ)]

]
(1.90)

= Ep(y|ξ)
[
Ep(θ|ξ,y)

[
log

p(θ|ξ, y)

b(θ)

]
− Ep(θ)

[
log

p(θ)

b(θ)

]]
(1.91)

= I3(ξ)−KL[p(θ)‖b(θ)]. (1.92)

Since H[p(θ)] and KL[p(θ)‖b(θ)] do not depend on ξ, choosing ξ to maximise EIG is equivalent to

maximising I2 and I3.

Corollary 1.11. Stepwise Uncertainty Reduction (Villemonteix et al., 2009) and Entropy Search (Hen-

nig and Schuler, 2012) are equivalent to EIG maximisation when θ = arg maxξ∈Ξ f(ξ).

Proof. Note that I2 = αSUR and I3 = αES when we replace the prior p(θ) with the posterior p(θ|Dt).
Since the result holds for a general experimental design set-up, it specifically holds in the BO case when

θ = arg maxξ∈Ξ f(ξ).

Hernández-Lobato et al. (2014) proposed Predictive Entropy Search (PES). Like previous methods, PES

uses the EIG (accounting for the embedded model, as in Sec. 1.6.1) as their acquisition function

αPES(ξ;Dt) = I(ξ;Dt) = H[p(θ|Dt)]− Ep(y|ξ,Dt)[H[p(θ|Dt ∪ {(ξ, y)})]]. (1.93)

However, the authors utilise the same insight as Houlsby et al. (2011) to write EIG in the equivalent

form (see Proposition 1.9)

I(ξ;Dt) = H[p(y|ξ,Dt)]− Ep(θ|Dt)[H[p(y|ξ,Dt, θ)]]. (1.94)

Within a GP model, the first term can be computed analytically, whilst the second is approximated by

drawing samples of θ|Dt and estimating H[p(y|ξ,Dt, θ)] using expectation propagation (Minka, 2001).

PES can be extended to batch acquisition in which we query f at multiple locations simultaneously on

each iteration (Shah and Ghahramani, 2015).

In Maximum Entropy Search (MES) (Wang and Jegelka, 2017), the authors approach the problem

differently. Instead of focusing on the latent variable of interest θ = arg maxξ∈Ξ f(ξ), they instead

formulate the problem with variable of interest θm = maxξ∈Ξ f(ξ). Here, θm is a one-dimensional

random variable that represents the maximum value of the function f , rather than its arg max. The

objective function for MES is then the EIG between a new observation y at design ξ and their parameter

of interest θm

αMES(ξ;Dt) = H[p(y|ξ,Dt)]− Ep(θm|Dt)[H[p(y|ξ,Dt, θm)]]. (1.95)

The MES objective may be easier to compute than PES with a GP model for f because θm is always

one dimensional.
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Computationally, a distinctive feature of BO with a GP model that sets it apart from computing the

EIG in standard models (Sec. 1.4) is that many calculations can be performed analytically for the GP.

For example, H[p(y|ξ,Dt)] is computed analytically in the PES acquisition function—this calculation

would be intractable in a general model.

Other acquisition functions

Probability of improvement Perhaps the simplest acquisition rule, probability of improvement

(Kushner, 1964) computes the probability that f(ξ) is greater than some threshold τ

αPI(ξ;Dt) := P(f(ξ) < τ |Dt). (1.96)

Typically, the threshold τ is chosen adaptively to be the best objective value seen so far: τt = max{y1, . . . , yt}.

Expected improvement A related acquisition rule is expected improvement (Mockus et al., 1978).

This incorporates the amount by which the function value can be expected to increase at the location ξ,

giving

αEI(ξ;Dt) := E((f(ξ)− τ)+|Dt) (1.97)

where x+ = max(0, x).

Upper confidence bound Starting with theoretical work on multi-armed bandits (Lai and Robbins,

1985), upper confidence bound (UCB) acquisition rules have been popular. Srinivas et al. (2009) explicitly

considered the application of UCB functions with a GP model for BO. In its most general form, we let

qp(·) denote to the p-quantile of a univariate distribution. Then the UCB-p acquisition function is

αUCB-p(ξ;Dt) := qp(f(ξ)|Dt). (1.98)

In the Gaussian case, f(ξ)|Dt ∼ N(µ(ξ|Dt), σ(ξ|Dt)2), an equivalent parametrisation of the UCB acqui-

sition function is

αUCB-p(ξ;Dt) = µ(ξ|Dt) + βpσ(ξ|Dt) (1.99)

where βp is the p-quantile of the standard Normal distribution.

Thompson sampling Thompson (1933) proposed a stochastic acquisition rule for Bayesian optimisa-

tion. Given a sample of the functional posterior ft ∼ p(f |Dt), Thompson Sampling chooses the maximiser

of this sample as the next sampling location. This amounts to using the acquisition function

αTS(ξ;Dt) = ft(ξ) where ft ∼ p(f |Dt). (1.100)
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Hernández-Lobato et al. (2014) showed how the optimisation of a sample from the GP posterior can be

approximately calculated.

1.8 Sequential Bayesian Experimental Design

We now lay out the theory of sequential experimentation more formally. Extending the basic sequential

framework that we described for active learning in Sec. 1.5, we suppose that we have a sequence of T

experiments. For each experiment, we pick ξt adaptively using the data that has already been observed4

Dt−1 = (ξ1, y1), . . . , (ξt−1, yt−1). Given this design, we conduct an experiment using ξt and obtain

outcome yt. After each step of the experiment, our beliefs about θ are summarised by the posterior

p(θ|Dt), which is calculated as in Sec. 1.2.2. For an embedded model (Sec. 1.6), we would update our

beliefs on the extended parameters ψ. For simplicity in this section, we assume we are not in an embedded

model, unless otherwise stated, so the parameter θ is a full description of the model.

Policies and objectives The design ξt must be chosen on the basis of Dt−1. A general abstraction

to describe this is to introduce a stochastic policy π(ξ|Dt−1) that maps from Dt−1 to a distribution over

designs. A special case of this is a deterministic policy, for which ξt is simply a function of Dt−1.

In the sequential setting, it no longer makes sense to talk of the optimality of individual designs. Indeed,

we cannot say whether a design ξ2 will be optimal until we have observed the outcome y1. Instead, we

can describe optimality in terms of the policy—the policy which makes the best decision for ξ2 for every

possible value of y1 would be an optimal policy.

Optimality also requires a criterion, so we must extend the utility-based approach of Sec. 1.3 based on

Lindley (1972) to the sequential setting. Perhaps the most natural extension of Lindley’s original theory,

which is used implicitly by Huan and Marzouk (2016); Foster et al. (2021) is to consider a final utility,

or reward, which is obtained after all data has been collected. In this terminal reward framework, we

assume that we have a utility function U(θ,DT ). Once we have collected all our data, we have expected

utility Ep(θ|DT )[U(θ,DT )]. The optimal policy, therefore, is the natural counterpart to equation (1.9),

namely

π∗ = arg max
π

Ep(DT |π)

[
Ep(θ|DT )[U(θ,DT )]

]
(1.101)

where p(DT |π) = Ep(θ)
[∏T

t=1 π(ξt|Dt−1)p(yt|θ, ξt)
]
for an exchangeable model5. The whole sequential

experiment process is described in Algorithm 3.

Sequential EIG The natural extension of EIG to the sequential setting is to let (Foster et al., 2021)

UI(DT ) = H[p(θ)]−H[p(θ|DT )] (1.102)
4For an exchangeable model, the order of the data does not matter, so we could write Dt−1 = {(ξ1, y1), . . . , (ξt−1, yt−1)},

which we implicitly assumed was the case in Sections 1.5 and 1.7. For a non-exchangeable model, we need to know the
order that data was collected to conduct valid inference.

5For a non-exchangeable model, it would be p(DT |π) = Ep(θ)
[∏T

t=1 π(ξt|Dt−1)p(yt|θ, ξt,Dt−1)
]
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Algorithm 3 Terminal reward Sequential Bayesian Experimental Design

Require: Prior p(θ), model p(y|ξ, θ), initial data D0 may be empty.
for step t = 1, . . . , T do

Use policy to compute design ξt ∼ π(ξ|Dt−1)
Obtain experimental observation yt ∼ p(y|θ, ξt) with design ξt
Set Dt = (ξ1, y1), . . . , (ξt, yt)

end for
Obtain reward U(θ,DT )

or equivalently (Huan and Marzouk, 2016)

UKL(DT ) = KL[p(θ|DT )‖p(θ)]. (1.103)

The intuition behind this utility is to reduce our uncertainty in the value of θ from the sum total of

all our experiments. It is in the sequential setting that the naturalness of using information-theoretic

objectives for experimental design becomes most apparent.

Example 1.12 (Shannon (1948); Lindley (1956)). Consider a model with θ = (L,R) where L and R are

discrete random variables with independent uniform priors θ ∼ Unif(nL) × Unif(nR). Suppose we have

two experimental designs at our disposal: ξL and ξR which produce noiseless outcomes giving the values

of L and R respectively. Then, the utility of the sequence of experiments ξL, ξR is equal to sum of the

utilities of the separate experiments ξL and ξR, i.e.

UI((ξL, L), (ξR, R)) = UI((ξL, L)) + UI((ξR, R)). (1.104)

Proof. Direct calculation using equation (1.102) gives

UI((ξL, L), (ξR, R)) = log(nLnR) = log nL + log nR (1.105)

UI((ξL, L)) = log nL (1.106)

UI((ξR, R)) = log nR. (1.107)

Shannon (1948) showed that this property (along with other technical requirements) can only be satisfied

by utilities based on entropy, making the EIG arguably the most natural criterion for sequential Bayesian

experimental design.

Static and batch policies One simple approximation to the optimal policy is to select all designs

ξ1, . . . , ξT before the start of the experiment. This is known as static design, also called open-loop design

(DiStefano III et al., 2014). In effect, static design collapses the sequential design problem back into the

one-step problem of Sec. 1.3, albeit with a larger design space

ΞT = {(ξ1, . . . , ξT ) : ξt ∈ Ξ for all t} (1.108)
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and corresponding observation space. The probabilistic model is also augmented as in Sec. 1.2.2. Unfor-

tunately, static design may be arbitrarily worse than the performance of the best fully adaptive policy.

Rather than choosing all T designs upfront, we could instead choose design in batches of B. There can

be practical benefits for choosing designs in batches (Lyu et al., 2019), as opposed to choosing them

individually. Mathematically, this batch design procedure fits back into the sequential theory we have

already laid out, with batches of designs being chosen from the new design space ΞB . Static design

corresponds to the case B = T in which we stop after one batch. Batch design in active learning is

discussed on page 28.

1.8.1 Greedy design policies

Designing a policy to solve equation (1.101) can be challenging. One common approximate strategy is

greedy design (also called myopic design). A greedy policy can be characterised as choosing each design

ξt assuming that this is the final experiment—i.e. that once ξt has been chosen and yt observed, the

sequence of experiments will terminate. This means that the greedy policy will choose ξt to maximise

ξ∗t = arg max
ξ∈Ξ

Ep(y|ξt,Dt−1)

[
Ep(θ|Dt)[U(θ,Dt)]

]
. (1.109)

where p(y|ξt,Dt−1) = Ep(θ|Dt−1)[p(y|θ, ξ)]. We can see that this amounts to solving the one-step design

optimisation problem of equation (1.9) at each t, with the important distinction that we replace the

original prior p(θ) with the posterior given existing data p(θ|Dt−1). This agrees exactly with the greedy

acquisition strategy described in Section 1.5.

There is a subtle distinction when θ is embedded in a larger model with parameters ψ (Sec. 1.6)—

we must update our beliefs about all the parameters to p(ψ|Dt−1) and use the predictive distribution

p(y|ξt,Dt−1) = Ep(ψ|Dt−1)[p(y|ψ, θ)] for y. This agrees with the greedy acquisition strategy of Section 1.7,

where we update the full model on the unknown function f at each step.

The greedy (myopic) approach to experimental design is very widely adopted (Cavagnaro et al., 2010;

Drovandi et al., 2014; McGree et al., 2012; Myung et al., 2013; Foster et al., 2019). As noted, it is also

the typical sequential optimisation strategy in Bayesian active learning and Bayesian optimisation. One

benefit of the greedy strategy is its simplicity—it effectively reduces the sequential experimental design

problem to repeated applications of one-step design. It is typically observed that greedy optimisation for

experimental design does not fail as catastrophically as greedy policies can do in general reinforcement

learning tasks (Bakker et al., 2020). We explore a possible theoretical explanation for this phenomenon.

Submodularity

Howmuch do we lose by using a greedy approach? A key theoretical tool for studying greedy policies is the

notion of submodularity (Krause and Golovin, 2014). In short, if a utility function obeys submodularity

(and a number of other conditions), then the theorem of Nemhauser et al. (1978) proves that a greedy
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strategy can achieve at least (1− 1/e) ≈ 63% of the best possible utility.

To precisely define submodularity, we must first define several other concepts. For any (finite) set V , the

power set of V is 2V = {S : S ⊆ V }. A set function is any function g : 2V → R. The discrete derivative

of g is defined as

∆g(e|S) = g(S ∪ {e})− g(S), (1.110)

i.e. the extra value of adding element e to the set S ⊆ V . A set function g : 2V is submodular if, for

every A ⊆ B ⊆ V and for every e ∈ V \B,

∆g(e|B) ≤ ∆g(e|A). (1.111)

Intuitively, the value of adding e to the larger set B is smaller than the value of adding e to the smaller

set A. Submodularity captures the intuitive notion of ‘diminishing returns’. We also define a set function

to be monotone if, for A ⊆ B ⊆ V , we have

g(A) ≤ g(B). (1.112)

The greedy strategy to maximise a monotone set function is to increment S by adding elements one at a

time, following the rule

St = St−1 ∪ {et} where et = arg max
e∈V

∆g(e|St−1). (1.113)

The following theorem of Nemhauser et al. (1978) shows that the greedy strategy performs near-optimally

for submodular set functions.

Theorem 1.13 (Nemhauser et al. (1978)). Let g be a monotone, submodular set function g : 2V → R.

Let (St)t≥0 be obtained by the greedy strategy of equation (1.113). Then for any t ≤ |V | we have

g(St) ≥ (1− 1/e) max
S⊆V,|S|=t

g(S). (1.114)

This theorem proves that the greedy strategy can achieve at least (1− 1/e) of the best possible perfor-

mance.

Submodularity for static experimental design There is a direct connection between the theory of

submodularity and the greedy construction of static experimental designs. Indeed, the static experimental

design problem is to choose (ξ1, . . . , ξT ) where each ξt ∈ Ξ. We assign a value to each static design

following equation (1.101)

g(ξ1, . . . , ξT ) = Ep(y1,...,yT |ξ1,...,ξT )

[
Ep(θ|DT )[U(θ,DT )]

]
. (1.115)

40



Suppose we could show that g is a monotone, submodular set function. Then the result of Theorem 1.13

would apply, meaning that we could construct a static design greedily by adding one element at a time.

To satisfy these conditions, we first need g to be invariant to the order of ξ1, . . . , ξT ; we therefore assume

that the model is exchangeable (Sec. 1.2.2). For the properties of submodularity and monotonicity, we

need to choose a utility U , here we focus on the EIG with UI = H[p(θ)]−H[p(θ|DT )]. Then the function

g becomes the mutual information between θ and y1, . . . , yT given ξ1, . . . , ξT .

Proposition 1.14 (Krause and Guestrin (2012)). Suppose that, for any k and for designs ξ1, . . . , ξk,

the random variables y1|ξ1, . . . , yk|ξk are independent conditional on θ. Then the mutual information

g({ξ1, . . . , ξk}) = Ep(y1,...,yk|ξ1,...,ξk) [H[p(θ)]−H[p(θ|Dk)]] (1.116)

is a monontone, submodular set function.

The conditional independence assumption is equivalent to assuming an exchangeable model (Sec. 1.2.2)

in which θ is the only model parameter (Sec. 1.6). Proposition 1.14 was also proved by Kirsch et al.

(2019) in the context of BatchBALD for active learning.

Adaptive submodularity

The limitation of submodularity as a tool for analysing experimental design is that it does not consider

adaptive design policies where the choice of a later design could be conditional on the outcome of earlier

experiments. To address this limitation, Golovin and Krause (2011) introduced the notion of adaptive

submodularity.

To define adaptive submodularity within our framework for experimental design, we focus on a discrete

design space |Ξ| <∞. We can then define the conditional expected marginal benefit of a design ξ as

∆(ξ|Dt) = Ep(θ|Dt)p(y|θ,ξ)[U(θ,Dt ∪ {(ξ, y)})− U(θ,Dt)]. (1.117)

The utility U is adaptive monotone with respect to model p(θ)p(y|θ, ξ) if the conditional expected

marginal benefit of all designs is nonnegative. That is, for all t ≥ 0,Dt and ξ 6∈ Dt we have

∆(ξ|Dt) ≥ 0. (1.118)

Furthermore, the utility U is adaptive submodular with respect to model p(θ)p(y|θ, ξ) if for all s ≤ t and
all nested datasets Ds ⊆ Dt and for all designs ξ 6∈ Dt we have

∆(ξ|Dt) ≤ ∆(ξ|Ds). (1.119)

This is a natural generalisation of submodularity for set functions, and again it captures the principle of

‘diminishing returns’. Golovin and Krause (2011) were able to generalise the result of Nemhauser et al.
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(1978) to the adaptive case for noiseless experiments in which p(y|θ, ξ) is deterministic.

Theorem 1.15 (Golovin and Krause (2011)). Assume the likelihood p(y|θ, ξ) is deterministic. Let πgreedy

be the greedy policy of equation (1.109). Assume U is adaptive monotone and adaptive submodular for

model p(θ)p(y|θ, ξ). Then,

Ep(DT |πgreedy)

[
Ep(θ|DT )[U(θ,DT )]

]
≥ (1− 1/e) sup

π
Ep(DT |π)

[
Ep(θ|DT )[U(θ,DT )]

]
. (1.120)

Golovin et al. (2010) explored the applicability of this framework to Bayesian active learning and Bayesian

experimental design, focusing on the noiseless case in which p(y|θ, ξ) is deterministic. They proved

that the information gain utility UI is adaptive monotone and adaptive submodular, so the result of

Theorem 1.15 applies in this case.

A key results of Chen et al. (2015) did away with the noiseless assumption. Instead, they assumed

that different experimental outcomes are independent conditional on θ. This matches exactly with the

factorisation equation (1.3). They also assume that θ takes finitely many values |Θ| < ∞. The key

bound is as follows

Theorem 1.16 (Theorem 2 of Chen et al. (2015)). Let πgreedy be the adaptive greedy experimental design

policy. Assume that observations y are conditionally independent given θ. Then, for any δ > 0

Ep(DT |πgreedy) [UI(DT )] ≥
(

1− exp

[
− 1

γmax{log |Θ|, log(1/δ)}

])(
sup
π

Ep(DT |π) [UI(DT )]− δ
)

(1.121)

where γ is a constant that depends on the noise distribution (see Chen et al. (2015)), and UI is the

information gain defined in equation (1.102).

Chen et al. (2017) went on to consider the case of noisy and correlated experimental outcomes (violating

both the noiseless and the conditionally independent assumptions).

Finally, we note that the expected information gain is not adaptive submodular without assumption.

This is elucidated by the following example, in which outcomes are not independent conditional on θ.

Example 1.17 (Inspired by Theorem 9 of Golovin et al. (2010)). Consider a model with prior θ ∼
Unif({−1, 1}) and with v ∼ Unif({−1, 1}). We have two potentially useful designs. ξv reports the value

of v. ξθv reports the value of θv. We also have M ‘dummy’ designs ξd1 , . . . , ξdM which report nothing.

Clearly, the optimal strategy to learn θ is to conduct experiments with ξv and ξθv in any order, since

v · θv = θv2 = θ. However, if we analyse a one-step optimal greedy strategy, we observe that every design

apart from ξθv is independent of the value of θ, and hence has EIG 0. We can also verify that, without

knowing v, the posterior on θ given the outcome of design ξθv is still Unif({−1, 1}), hence the EIG of

this design is also 0. Thus the greedy strategy will pick a design at random. If M is very large, the greedy

strategy is likely to keep picking dummy designs.
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Asymptotic theory

A celebrated result of asymptotic statistics is the Bernstein–von Mises Theorem (Van der Vaart, 2000). In

our experimental design set-up, this says that, under certain technical conditions and with i.i.d. random

designs ξt
i.i.d.∼ p(ξ), the posterior distribution p(θ|Dt) is asymptotically Gaussian centred on the true

value θ∗ of the parameters of interest and with covariance matrix t−1M(θ∗)−1. (Here,M(θ) is the Fisher

information matrix, taking the expectation over ξ ∼ p(ξ).)

Paninski (2005) showed that a closely related result holds when designs are not random, but are chosen

by greedy maximisation of the EIG.

Theorem 1.18 (Theorem 1 of Paninski (2005)). Under certain technical conditions, the posterior dis-

tributions with greedy EIG maximisation are asymptotically Gaussian with mean θ∗ and with covariance

matrix t−1Σinfo. Furthermore, if t−1Σiid is the asymptotic covariance with i.i.d. random designs, then

det Σinfo ≤ det Σiid. (1.122)

This result tells us that the EIG maximisation strategy is no worse than i.i.d. sampling of designs in

terms of asymptotic posterior variance, and that it will recover the true value θ∗ in the limit as t→∞,

i.e. the procedure is statistically consistent.

1.8.2 Non-greedy design policies

Whilst greedy policies enjoy computational tractability and some theoretical guarantees, a more direct

approach to the problem of sequential experimental design is to seek the optimal policy that maximises

equation (1.109). As we discuss in Sec. 1.9, finding this optimal policy can be cast in the language of

reinforcement learning. In this section, we focus on computational approaches that have been suggested in

the literature that specifically address non-greedy experimental design. These can generally be organised

under two headings.

Forward sampling The forward sampling, or lookahead, family approaches relax the greedy assump-

tion that the next experiment will be the last one. Instead, they assume that there will be m more

experiments, and take account of these m future steps when deciding on the next experimental

design. As m grows larger, this approach more closely approximates the truly optimal decision.

However, with a larger m, the number of future outcomes to consider may grow exponentially.

Such approaches either try to limit the number of outcomes considered, or else use a smaller value

of m.

Backwards induction An alternative solution is to begin at the end. Classical optimisation theory

(Bellman, 1966) shows that sequential optimisation problems are often more easily solved by start-

ing with the final decision to be made at time T . For this final decision, the greedy solution is

exactly optimal. The values of designs at later steps can be propagated backwards to inform earlier
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decisions. (See Sec. 1.9 for a fuller discussion.)

Non-greedy optimisation has typically been confined to low-dimensional cases within experimental design

(Ryan et al., 2016). In medicine, Whitehead and Brunier (1995) and Whitehead and Williamson (1998)

used a multi-step lookahead when finding optimal treatment doses. Berry and Ho (1988) explored optimal

stopping when testing a one-sided hypothesis. Lewis and Berry (1994) applied backwards induction in

a Bayesian clinical trials setting. Carlin et al. (1998) used forward sampling in a closely related clinical

trial design problem. Brockwell and Kadane (2003) implemented backwards induction on a grid, and

applied this to clinical trial planning. Müller et al. (2006) explored forward sampling for dose-response

finding in clinical trials.

The main work to tackle the more general sequential experimental design problem, using the EIG utility,

was Huan and Marzouk (2016). They used approximate dynamic programming to perform backwards

induction by estimating the value function. The value function was then used to select optimal designs

at each stage. The intermediate posterior distributions were estimated on a dynamically adapted grid.

In another line of work, González et al. (2016) build a predictor of future query locations given the

current data. This allows them to use a forward sampling approach that is restricted to a single future

trajectory. Jiang et al. (2020) use a related approach in which the future query locations are learned by

repeatedly solving the static design optimisation problem with T − t designs, but only using one of these

designs at each step.

1.9 Bayesian Reinforcement Learning

Reinforcement learning (RL) (Sutton, 1990; Szepesvári, 2010) has a number of important and fascinating

connections to sequential Bayesian experimental design. First, the problem of sequential experimental

design is a reinforcement learning problem. Specifically, we will show how the set-up of the preceding

section can be cast as a Bayes Adaptive Markov Decision Process (BAMDP) (Ross et al., 2007; Guez

et al., 2012; Ghavamzadeh et al., 2016). Second, the problem of making sequential decision to learn

about a model is deeply connected to exploration in model-based reinforcement learning (Sun et al.,

2011; Shyam et al., 2019; Sekar et al., 2020).

1.9.1 Sequential Bayesian Experimental Design as a BAMDP

The BAMDP is a generalisation of the Markov Decision Process (Bellman, 1957; Duff, 2002) that ac-

commodates an unknown transition model. Adopting the notation of Guez et al. (2012), a BAMDP can

be described by its augmented state space S+, action space A, augmented transition model P+, reward

function R+ and discount factor γ. The augmented state space consists of the history of all states and

actions previously visited ht = s1a1 . . . at−1st. This data is used to update the transition model in a

Bayesian manner, using

p(P|ht) ∝ p(P)p(ht|P). (1.123)

44



For a sampled transition model, the probability of moving from st to st+1 when action at was used is

p(st+1|st, at,P) = P(st, at, st+1). (1.124)

The BAMDP transition model is therefore given by the marginal (Guez et al., 2012)

p(st+1|at, ht) =

∫
p(P|ht)P(st, at, st+1) dP. (1.125)

The reward for using action a in state s is sampled as r ∼ R(s, a). Planning in a BAMDP means finding

the policy that maximises

J (π) = Eπ

[
T∑

t=1

γ−trt

]
. (1.126)

To set up sequential Bayesian experimental design in this framework, we associate the augmented history

states with the data Dt up to time t. The actions of the BAMDP are the experimental designs ξt. The

transition model is associated with the model parameters θ (we assume in this section that we are not

considering an embedded model). The ‘transitions’ of a sequential experiment are given by

p(Dt+1|Dt, ξt+1) = Ep(θ|Dt)[p(yt+1|θ, ξ)] =

∫
p(θ|Dt)p(yt+1|θ, ξt+1) dθ (1.127)

which agrees with equation (1.125) if we take Pθ(yt+1, ξt+1, yt) = p(yt+1|θ, ξt+1). Note that we write at

as ξt+1, and that in the exchangeable experimental design case the transition model does not depend

explicitly on yt.

The only minor distinction from the set-up of Guez et al. (2012) is that the rewards in experimental

design depend on the augmented state Dt rather than the state st. We can take the reward function for

experimental design to be R(Dt) = 1[t = T ]Ep(θ|Dt)[U(θ,Dt)]. Setting the discount factor γ = 1, we see

that the BAMDP objective equation (1.126) is the same as the sequential experimental design problem

equation (1.101). This shows the close connection between these two fields. For completeness, the value

function and Q-function (Szepesvári, 2010) for Bayesian experimental design are given by

V π(Dt) = Ep(DT |Dt,π)

[
Ep(θ|DT )[U(θ,DT )]

]
(1.128)

Qπ(Dt, ξt+1) = Ep(DT |Dt,ξt+1,π)

[
Ep(θ|DT )[U(θ,DT )]

]
(1.129)

where

p(DT |Dt, π) = Ep(θ|Dt)

[
T∏

τ=t+1

π(ξτ |Dτ−1)p(yτ |θ, ξτ )

]
(1.130)

p(DT |Dt, ξt+1, π) = Ep(θ|Dt)

[
p(yt+1|θ, ξt+1)

T∏

τ=t+2

π(ξτ |Dτ−1)p(yτ |θ, ξτ )

]
. (1.131)

Belief states In the previous section, we followed Guez et al. (2012) and took the state space for

experimental design to be the dataset Dt. We see from equation (1.127) that the transition model only
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depends on Dt via the posterior p(θ|Dt). Furthermore, our choice of reward function only depends on

p(θ|Dt) (plus an indicator that we have reached the final stage). Thus, it is sufficient to take p(θ|Dt)
as our augmented state. Posterior distributions treated as states are referred to as belief states (Igl

et al., 2018). They have been utilised extensively in Bayesian RL (Igl et al., 2018; Zintgraf et al., 2019;

Ghavamzadeh et al., 2016) and are beginning to be used in Bayesian experimental design (Huan and

Marzouk, 2016).

1.9.2 Exploration

We have seen the close connection between sequential Bayesian experimental design and Bayesian RL.

We associated the transition model of an unknown MDP with the model parameter θ. In this framing, we

have a new interpretation of objective functions for experimental design—they encourage the collection of

data to improve knowledge of the transition model and are motivated by model-derived quantities, rather

than by an external reward signal. Utility functions for experimental design can thus be reinterpreted

as rewards for exploration behaviour that leads to improved knowledge in a model of the environment.

The experimental design scenario is most closely connected with model-based reinforcement learning

(Sutton, 1990). Specifically, we consider reinforcement learning settings in which we have a Bayesian

parametric model of the environment with parameter θ. A range of authors have considered ‘intrinsic

rewards’ (Singh et al., 2005)—unlike external rewards which are separate from the model and environment

dynamics, intrinsic rewards encourage behaviour to learn about the environment. For example, Itti and

Baldi (2006) used surprisal as an intrinsic reward—agents are encouraged to take actions for which the

outcome is not predictable, and hence will be surprising. Mathematically, surprisal can be defined using

predictive entropy. Empowerment (Klyubin et al., 2005; Salge et al., 2014; Mohamed and Rezende,

2015) is another intrinsic reward signal that is based on conditional mutual information between state

and action variables. Sajid et al. (2021) studied curiosity-driven exploration and the connection with

free energy minimisation.

One line of research uses EIG as an intrinsic reward signal (Storck et al., 1995). This curiosity-driven

exploration (Schmidhuber, 2010; Sun et al., 2011) is therefore the closest part of the RL literature to

sequential experimental design. Specifically, Sun et al. (2011) utilise information gain as a reward. Given

history h and h′ such that h is a prefix of h′ they define

IG(h′‖h) = KL (p(θ|h′)‖p(θ|h)) . (1.132)

To motivate this choice, Sun et al. (2011) proved the following result (a more formal version of Exam-

ple 1.12)

Proposition 1.19 (Sun et al. (2011)). Let h ⊆ h′ ⊆ h′′ be histories such that h a prefix of h′ and h′ a

prefix of h′′. Suppose h′ has been observed. Then,

Eh′′|h′ [IG(h′′‖h)] = IG(h′‖h) + Eh′′|h′ [IG(h′′‖h′)] (1.133)
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so the information gain is additive in expectation.

Information gain for exploration was applied to robotics by Fung et al. (2016).

Computational approaches to exploration in Bayesian RL with EIG

To utilise information gain as an intrinsic reward for exploration requires approximation and optimisation

of this quantity. Storck et al. (1995) focused on the tabular setting with finite states and actions, in

which the transition model can be described with a finite number of parameters. Sun et al. (2011) also

focused on the finite space case for their computations. Houthooft et al. (2016) tackled the continuous

space problem. They used variational inference (Rezende et al., 2014; Kingma and Welling, 2014) to

estimate the posterior distributions p(θ|Dt). They then used the variational approximate posterior as

a surrogate for the true posterior when computing the information gain reward. Information gain was

combined with an external reward signal to balance exploration and exploitation. Shyam et al. (2019)

used an ensemble to approximate the distribution p(θ|Dt), to estimate information gain they replaced

Shannon entropy with Rényi entropy which can be calculated for a mixture of Gaussians. Sekar et al.

(2020) used a closely related approach. Rather than the Rényi entropy, they used the empirical variance

of ensemble means as a way of estimating the intractable marginal entropy that occurs in the EIG.
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Abstract

Bayesian optimal experimental design (BOED) is a principled framework for mak-
ing efficient use of limited experimental resources. Unfortunately, its applicability
is hampered by the difficulty of obtaining accurate estimates of the expected infor-
mation gain (EIG) of an experiment. To address this, we introduce several classes
of fast EIG estimators by building on ideas from amortized variational inference.
We show theoretically and empirically that these estimators can provide significant
gains in speed and accuracy over previous approaches. We further demonstrate the
practicality of our approach on a number of end-to-end experiments.

1 Introduction

Tasks as seemingly diverse as designing a study to elucidate human cognition, selecting the next
query point in an active learning loop, and designing online feedback surveys all constitute the same
underlying problem: designing an experiment to maximize the information gathered. Bayesian
optimal experimental design (BOED) forms a powerful mathematical abstraction for tackling such
problems [8, 23, 37, 43] and has been successfully applied in numerous settings, including psychology
[30], Bayesian optimization [16], active learning [15], bioinformatics [42], and neuroscience [38].

In the BOED framework, we construct a predictive model p(y|θ, d) for possible experimental
outcomes y, given a design d and a particular value of the parameters of interest θ. We then choose
the design that optimizes the expected information gain (EIG) in θ from running the experiment,

EIG(d) , Ep(y|d)

[
H[p(θ)]−H[p(θ|y, d)]

]
, (1)

where H[·] represents the entropy and p(θ|y, d) ∝ p(θ)p(y|θ, d) is the posterior resulting from
running the experiment with design d and observing outcome y. In other words, we seek the design
that, in expectation over possible experimental outcomes, most reduces the entropy of the posterior
over our target latent variables. If the predictive model is correct, this forms a design strategy that is
(one-step) optimal from an information-theoretic viewpoint [24, 37].

The BOED framework is particularly powerful in sequential contexts, where it allows the results of
previous experiments to be used in guiding the designs for future experiments. For example, as we
ask a participant a series of questions in a psychology trial, we can use the information gathered
from previous responses to ask more pertinent questions in the future, that will, in turn, return more
information. This ability to design experiments that are self-adaptive can substantially increase their
efficiency: fewer iterations are required to uncover the same level of information.

In practice, however, the BOED approach is often hampered by the difficulty of obtaining fast and
high-quality estimates of the EIG: due to the intractability of the posterior p(θ|y, d), it constitutes

∗ Part of this work was completed by AF during an internship with Uber AI Labs.
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a nested expectation problem and so conventional Monte Carlo (MC) estimation methods cannot
be applied [33]. Moreover, existing methods for tackling nested expectations have, in general, far
inferior convergence rates than those for conventional expectations [22, 30, 32]. For example, nested
MC (NMC) can only achieve, at best, a rate of O(T−1/3) in the total computational cost T [33],
compared with O(T−1/2) for conventional MC.

To address this, we propose a variational BOED approach that sidesteps the double intractability of
the EIG in a principled manner and yields estimators with convergence rates in line with those for
conventional estimation problems. To this end, we introduce four efficient and widely applicable
variational estimators for the EIG. The different methods each present distinct advantages. For
example, two allow training with implicit likelihood models, while one allows for asymptotic
consistency even when the variational family does not contain the target distribution.

We theoretically confirm the advantages of our estimators, showing that they all have a convergence
rate of O(T−1/2) when the variational family contains the target distribution. We further verify their
practical utility using a number of experiment design problems inspired by applications from science
and industry, showing that they provide significant empirical gains in EIG estimation over previous
methods and that these gains lead, in turn, to improved end-to-end performance.

To maximize the space of potential applications and users for our estimators, we provide2 a general-
purpose implementation of them in the probabilistic programming system Pyro [5], exploiting Pyro’s
first-class support for neural networks and variational methods.

2 Background

The BOED framework is a model-based approach for choosing an experiment design d in a manner
that optimizes the information gained about some parameters of interest θ from the outcome y of the
experiment. For instance, we may wish to choose the question d in a psychology trial to maximize
the information gained about an underlying psychological property of the participant θ from their
answer y to the question. In general, we adopt a Bayesian modelling framework with a prior p(θ)
and a predictive model p(y|θ, d). The information gained about θ from running experiment d and
observing y is the reduction in entropy from the prior to the posterior:

IG(y, d) = H[p(θ)]−H[p(θ|y, d)] . (2)

At the point of choosing d, however, we are uncertain about the outcome. Thus, in order to define
a metric to assess the utility of the design d we take the expectation of IG(y, d) under the marginal
distribution over outcomes p(y|d) = Ep(θ)[p(y|θ, d)] as per (1). We can further rearrange this as

EIG(d) = Ep(y,θ|d)

[
log

p(θ|y, d)

p(θ)

]
= Ep(y,θ|d)

[
log

p(y, θ|d)

p(θ)p(y|d)

]
= Ep(y,θ|d)

[
log

p(y|θ, d)

p(y|d)

]
(3)

with the result that the EIG can also be interpreted as the mutual information between θ and y given
d, or the epistemic uncertainty in y averaged over the prior p(θ). The Bayesian optimal design is
defined as d∗ , arg maxd∈D EIG(d), where D is the set of permissible designs.

Computing the EIG is challenging since neither p(θ|y, d) or p(y|d) can, in general, be found in closed
form. Consequently, the integrand is intractable and conventional MC methods are not applicable.
One common way of getting around this is to employ a nested MC (NMC) estimator [30, 43]

µ̂NMC(d), 1

N

N∑

n=1

log
p(yn|θn,0, d)

1
M

∑M
m=1 p(yn|θn,m, d)

where θn,m
i.i.d.∼ p(θ), yn∼ p(y|θ = θn,0, d). (4)

Rainforth et al. [33] showed that this estimator, which has a total computational cost T = O(NM),
is consistent in the limit N,M →∞ with RMSE convergence rate O(N−1/2 +M−1), and that it is
asymptotically optimal to set M ∝

√
N , yielding an overall rate of O(T−1/3).

Given a base EIG estimator, a variety of different methods can be used for the subsequent optimization
over designs, including some specifically developed for BOED [1, 29, 32]. In our experiments, we

2Implementations of our methods are available at http://docs.pyro.ai/en/stable/contrib.oed.html.
To reproduce the results in this paper, see https://github.com/ae-foster/pyro/tree/vboed-reproduce.
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will adopt Bayesian optimization [39], due to its sample efficiency, robustness to multi-modality, and
ability to deal naturally with noisy objective evaluations. However, we emphasize that our focus is on
the base EIG estimator and that our estimators can be used more generally with different optimizers.

The static design setting we have implicitly assumed thus far in our discussion can be generalized
to sequential contexts, in which we design T experiments d1, ..., dT with outcomes y1, ..., yT . We
assume experiment outcomes are conditionally independent given the latent variables and designs, i.e.

p(y1:T , θ|d1:T ) = p(θ)
T∏

t=1

p(yt|θ, dt). (5)

Having conducted experiments 1, ..., t− 1, we can design dt by incorporating data in the standard
Bayesian fashion: at experiment iteration t, we replace the prior p (θ) in (3) with p (θ|d1:t−1, y1:t−1),
the posterior conditional on the first t− 1 designs and outcomes. We can thus conduct an adaptive
sequential experiment in which we optimize the choice of the design dt at each iteration.

3 Variational Estimators

Though consistent, the convergence rate of the NMC estimator is prohibitively slow for many practical
problems. As such, EIG estimation often becomes the bottleneck for BOED, particularly in sequential
experiments where the BOED calculations must be fast enough to operate in real-time.

In this section we show how ideas from amortized variational inference [10, 17, 34, 40] can be used
to sidestep the double intractability of the EIG, yielding estimators with much faster convergence
rates thereby alleviating the EIG bottleneck. A key insight for realizing why such fundamental gains
can be made is that the NMC estimator is inefficient because a separate estimate of the integrand
in (3) is made for each yn. The variational approaches we introduce instead look to directly learn a
functional approximation—for example, an approximation of y 7→ p(y|d)—and then evaluate this
approximation at multiple points to estimate the integral, thereby allowing information to be shared
across different values of y. If M evaluations are made in learning the approximation, the total
computational cost is now T = O(N +M), yielding substantially improved convergence rates.

Variational posterior µ̂post Our first approach, which we refer to as the variational posterior
estimator µ̂post, is based on learning an amortized approximation qp(θ|y, d) to the posterior p(θ|y, d)
and then using this to estimate the EIG:

EIG(d) ≈ Lpost(d) , Ep(y,θ|d)

[
log

qp(θ|y, d)

p(θ)

]
≈ µ̂post(d) , 1

N

N∑

n=1

log
qp(θn|yn, d)

p(θn)
, (6)

where yn, θn
i.i.d.∼ p(y, θ|d) and µ̂post(d) is a MC estimator of Lpost(d). We draw samples of p(y, θ|d)

by sampling θ ∼ p(θ) and then y|θ ∼ p(y|θ, d). We can think of this approach as amortizing the
cost of the inner expectation, instead of running inference separately for each y.

To learn a suitable qp(θ|y, d), we show in Appendix A that Lpost(d) forms a variational lower bound
EIG(d) ≥ Lpost(d) that is tight if and only if qp(θ|y, d) = p(θ|y, d). Barber and Agakov [3] used
this bound to estimate mutual information in the context of transmission over noisy channels, but the
connection to experiment design has not previously been made.

This result means we can learn qp(θ|y, d) by introducing a family of variational distributions
qp(θ|y, d, φ) parameterized by φ and then maximizing the bound with respect to φ:

φ∗ = arg max
φ

Ep(y,θ|d)

[
log

qp(θ|y, d, φ)

p(θ)

]
, EIG(d) ≈ Lpost(d;φ∗). (7)

Provided that we can generate samples from the model, this maximization can be performed using
stochastic gradient methods [35] and the unbiased gradient estimator

∇φLpost(d;φ) ≈ 1
S

∑S

i=1
∇φ log qp(θi|yi, d, φ) where yi, θi

i.i.d.∼ p(y, θ|d), (8)

and we note that no reparameterization is required as p(y, θ|d) is independent of φ. After K
gradient steps we obtain variational parameters φK that approximate φ∗, which we use to compute
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a corresponding EIG estimator by constructing a MC estimator for Lpost(d;φ) as per (6) with
qp(θn|yn, d) = qp(θn|yn, d, φK). Interestingly, the tightness of Lpost(d) turns out to be equal to
the expected forward KL divergence3 Ep(y|d) [KL (p(θ|y, d)||qp(θ|y, d, φ))] so we can view this
approach as learning an amortized proposal by minimizing this expected KL divergence.

Variational marginal µ̂marg In some scenarios, θ may be high-dimensional, making it difficult to
train a good variational posterior approximation. An alternative approach that can be attractive in
such cases is to instead learn an approximation qm(y|d) to the marginal density p(y|d) and substitute
this into the final form of the EIG in (3). As shown in Appendix A, this yields an upper bound

EIG(d) ≤ Umarg(d) , Ep(y,θ|d)

[
log

p(y|θ, d)

qm(y|d)

]
≈ µ̂marg(d) , 1

N

N∑

n=1

log
p(yn|θn, d)

qm(yn|d)
, (9)

where again yn, θn
i.i.d.∼ p(y, θ|d) and the bound is tight when qm(y|d) = p(y|d). Analogously to

µ̂post, we can learn qm(y|d) by introducing a variational family qm(y|d, φ) and then performing
stochastic gradient descent to minimize Umarg(d, φ). As with µ̂post, this bound was studied in a mutual
information context [31], but it has not been utilized for BOED before.

Variational NMC µ̂VNMC As we will show in Section 4, µ̂post and µ̂marg can provide substantially
faster convergence rates than NMC. However, this comes at the cost of converging towards a biased
estimate if the variational family does not contain the target distribution. To address this, we propose
another EIG estimator, µ̂VNMC, which allows one to trade-off resources between the fast learning of a
biased estimator permitted by variational approaches, and the ability of NMC to eliminate this bias.4

We can think of the NMC estimator as approximating p(y|d) using M samples from the prior. At a
high-level, µ̂VNMC is based around learning a proposal qv(θ|y, d) and then using samples from this
proposal to make an importance sampling estimate of p(y|d), potentially requiring far fewer samples
than NMC. Formally, it is based around a bound that can be arbitrarily tightened, namely

EIG(d) ≤ E

[
log p(y|θ0, d)− log

1

L

L∑

`=1

p(y, θ`|d)

qv(θ`|y, d)

]
, UVNMC(d, L) (10)

where the expectation is taken over y, θ0:L ∼ p(y, θ0|d)
∏L
`=1 qv(θ`|y, d), which corresponds to one

sample y, θ0 from the model and L samples from the approximate posterior conditioned on y. To
the best of our knowledge, this bound has not previously been studied in the literature. As with µ̂post
and µ̂marg, we can minimize this bound to train a variational approximation qv(θ|y, d, φ). Important
features of UVNMC(d, L) are summarized in the following lemma; see Appendix A for the proof.
Lemma 1. For any given model p(θ)p(y|θ, d) and valid qv(θ|y, d),

1. EIG(d) = limL→∞ UVNMC(d, L) ≤ UVNMC(d, L2) ≤ UVNMC(d, L1) ∀L2 ≥ L1 ≥ 1,

2. UVNMC(d, L) = EIG(d) ∀L ≥ 1 if qv(θ|y, d) = p(θ|y, d) ∀y, θ,

3. UVNMC(d, L)−EIG(d)=Ep(y|d)

[
KL
(∏L

`=1 qv(θ`|y, d)
∣∣∣∣ 1
L

∑L
`=1 p(θ`|y, d)

∏
k 6=` qv(θk|y, d)

)]

Like the previous bounds, the VNMC bound is tight when qv(θ|y, d) = p(θ|y, d). Importantly, the
bound is also tight as L → ∞, even for imperfect qv. This means we can obtain asymptotically
unbiased EIG estimates even when the true posterior is not contained in the variational family.

Specifically, we first train φ using K steps of stochastic gradient on UVNMC(d, L) with some fixed
L. To form a final EIG estimator, however, we use a MC estimator of UVNMC(d,M) where typically
M � L. This final estimator is a NMC estimator that is consistent as N,M →∞ with φK fixed

µ̂VNMC(d) , 1

N

N∑

n=1

(
log p(yn|θn,0, d)− log

1

M

M∑

m=1

p(yn, θn,m|d)

qv(θn,m|yn, d, φK)

)
(11)

where θn,0
i.i.d.∼ p(θ), yn ∼ p(y|θ = θn,0, d) and θn,m ∼ qv(θ|y = yn, d, φK). In practice,

performance is greatly enhanced when the proposal qv is a good, if inexact, approximation to the
posterior. This significantly improves upon traditional µ̂NMC, which sets qv(θ|y, d) = p(θ) in (11).

3See Appendix A for a proof. A comparison with the reverse KL divergence can be found in Appendix G.
4In Appendix F, we describe a method using qm(y|d) as a control variate that can also eliminate this bias

and lower the variance of NMC, requiring additional assumptions about the model and variational family.
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Implicit likelihood and µ̂m+` So far we have assumed that we can evaluate p(y|θ, d) pointwise.
However, many models of interest have implicit likelihoods from which we can draw samples, but
not evaluate directly. For example, models with nuisance latent variables ψ (such as a random effect
models) are implicit likelihood models because p(y|θ, d) = Ep(ψ|θ) [p(y|θ, ψ, d)] is intractable, but
can still be straightforwardly sampled from.

In this setting, µ̂post is applicable without modification because it only requires samples from p(y|θ, d)
and not evaluations of this density. Although µ̂marg is not directly applicable in this setting, it can be
modified to accommodate implicit likelihoods. Specifically, we can utilize two approximate densities:
qm(y|d) for the marginal and q`(y|θ, d) for the likelihood. We then form the approximation

EIG(d) ≈ Im+`(d) , Ep(y,θ|d)

[
log

q`(y|θ, d)

qm(y|d)

]
≈ µ̂m+`(d) , 1

N

N∑

n=1

log
q`(yn|θn, d)

qm(yn|d)
. (12)

Unlike the previous three cases, Im+`(d) is not a bound on EIG(d), meaning it is not immediately
clear how to train qm(y|d) and q`(y|θ, d) to achieve an accurate EIG estimator. The following lemma
shows that we can bound the EIG estimation error of Im+`. The proof is in Appendix A.

Lemma 2. For any given model p(θ)p(y|θ, d) and valid qm(y|d) and q`(y|θ, d), we have

|Im+`(d)− EIG(d)| ≤ −Ep(y,θ|d)[log qm(y|d) + log q`(y|θ, d)] + C, (13)

where C = −H[p(y|d)] − Ep(θ) [H(p(y|θ, d)] does not depend on qm or q`. Further, the RHS of
(13) is 0 if and only if qm(y|d) = p(y|d) and q`(y|θ, d) = p(y|θ, d) for almost all y, θ.

This lemma implies that we can learn qm(y|d) and q`(y|θ, d) by maximizing Ep(y,θ|d)[log qm(y|d) +
log q`(y|θ, d)] using stochastic gradient ascent, and substituting these learned approximations into
(12) for the final EIG estimator. To the best of our knowledge, this approach has not previously been
considered in the literature. We note that, in general, qm and q` are learned separately and there need
not be any weight sharing between them. See Appendix A.4 for a discussion of the case when we
couple qm and q` so that qm(y|d) = Ep(θ)[q`(y|θ, d)].

Using estimators for sequential BOED In sequential settings, we also need to consider the im-
plications of replacing p(θ) in the EIG with p(θ|d1:t−1, y1:t−1). At first sight, it appears that,
while µ̂marg and µ̂m+` only require samples from p(θ|d1:t−1, y1:t−1), µ̂post and µ̂VNMC also re-
quire its density to be evaluated, a potentially severe limitation. Fortunately, we can, in fact,
avoid evaluating this posterior density. We note that, from (5), we have p(θ|y1:t−1, d1:t−1) =

p(θ)
∏t−1
i=1 p(yi|θ, di)/p(y1:t−1|d1:t−1). Substituting this into the integrand of (6) gives

Lpost(dt) = Ep(θ|y1:t−1,d1:t−1)p(yt|θ,dt)

[
log

qp(θ|yt, dt)
p(θ)

∏t−1
i=1 p(yi|θ, di)

]
+ log p(y1:t−1|d1:t−1) (14)

where p(θ)
∏t−1
i=1 p(yi|θ, di) can be evaluated exactly and the additive constant log p(y1:t−1|d1:t−1)

does not depend on the new design dt, θ, or any of the variational parameters, and so can be safely
ignored. Making the same substitution in (11) shows that we can also estimate UVNMC(dt, L) up
to a constant, which can then be similarly ignored. As such, any inference scheme for sampling
p(θ|d1:t−1, y1:t−1), approximate or exact, is compatible with all our approaches.

Table 1: Summary of EIG estimators. Baseline meth-
ods are explained in Section 5.

Implicit Bound Consistent Eq.

O
ur

s

µ̂post 3 Lower 7 (6)
µ̂marg 7 Upper 7 (9)
µ̂VNMC 7 Upper 3 (11)
µ̂m+` 3 7 7 (12)

B
as

el
in

e µ̂NMC 7 Upper 3 (4)
µ̂laplace 7 7 7 (75)
µ̂LFIRE 3 7 7 (76)
µ̂DV 3 Lower 7 (77)

Selecting an estimator Having proposed
four estimators, we briefly discuss how to
choose between them in practice. For refer-
ence, a summary of our estimators is given
in Table 1, along with several baseline ap-
proaches. First, µ̂marg and µ̂m+` rely on
approximating a distribution over y; µ̂post
and µ̂VNMC approximate distributions over
θ. We may prefer the former two estimators
if dim(y) � dim(θ) as it leaves us with a
simpler density estimation problem, and vice
versa. Second, µ̂marg and µ̂VNMC require an
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explicit likelihood whereas µ̂post and µ̂m+` do not. If an explicit likelihood is available, it typically
makes sense to use it—one would never use µ̂m+` over µ̂marg for example. Finally, if the variational
families do not contain the target densities, µ̂VNMC is the only method guaranteed to converge to the
true EIG(d) in the limit as the computational budget increases. So we might prefer µ̂VNMC when
computation time and cost are not constrained.

4 Convergence rates

We now investigate the convergence of our estimators. We start by breaking the overall error down into
three terms: I) variance in MC estimation of the bound; II) the gap between the bound and the tightest
bound possible given the variational family; and III) the gap between the tightest possible bound and
EIG(d). With variational EIG approximation B(d) ∈ {Lpost(d), Umarg(d), UVNMC(d, L), Im+`(d)},
optimal variational parameters φ∗, learned variational parameters φK after K stochastic gradient
iterations, and MC estimator µ̂(d, φK) we have, by the triangle inequality,

‖µ̂(d, φK)−EIG(d)‖2 ≤ ‖µ̂(d, φK)−B(d, φK)‖2︸ ︷︷ ︸
I

+ ‖B(d, φK)−B(d, φ∗)‖2︸ ︷︷ ︸
II

+ |B(d, φ∗)−EIG(d)|︸ ︷︷ ︸
III

where we have used the notation ‖X‖2 ,
√
E [X2] to denote the L2 norm of a random variable.

By the weak law of large numbers, term I scales as N−1/2 and can thus be arbitrarily reduced
by taking more MC samples. Provided that our stochastic gradient scheme converges, term II
can be reduced by increasing the number of stochastic gradient steps K. Term III, however, is a
constant that can only be reduced by expanding the variational family (or increasing L for µ̂VNMC).
Each approximation B(d) thus converges to a biased estimate of the EIG(d), namely B(d, φ∗). As
established by the following Theorem, if we set N ∝ K, the rate of convergence to this biased
estimate is O(T−1/2), where T represents the total computational cost, with T = O(N +K).
Theorem 1. Let X be a measurable space and Φ be a convex subset of a finite dimensional inner
product space. Let X1, X2, ... be i.i.d. random variables taking values in X and f : X × Φ→ R be
a measurable function. Let

µ(φ) , E[f(X1, φ)] ≈ µ̂N (φ) , 1

N

∑N

n=1
f(Xn, φ)

and suppose that supφ∈Φ ‖f(X1, φ)‖2 < ∞. Then supφ∈Φ ‖µ̂N (φ)− µ(φ)‖2 = O(N−1/2). Sup-
pose further that Assumption 1 in Appendix B holds and that φ∗ is the unique minimizer of µ. After
K iterations of the Polyak-Ruppert averaged stochastic gradient descent algorithm of [28] with
gradient estimator ∇φf(Xt, φ), we have ‖µ(φK)− µ(φ∗)‖2 = O(K−1/2) and, combining with the
first result,

‖µ̂N (φK)− µ(φ∗)‖2 = O(N−1/2 +K−1/2) = O(T−1/2) if N ∝ K.
The proof relies on standard results from MC and stochastic optimization theory; see Appendix B.
We note that the assumptions required for the latter, though standard in the literature, are strong. In
practice, φ can converge to a local optimum φ†, rather than the global optimum φ∗, introducing an
additional asymptotic bias

∣∣B(d, φ†)− B(d, φ∗)
∣∣ into term III.

Theorem 1 can be applied directly to µ̂marg, −µ̂post, and µ̂VNMC (with fixed M = L), showing that
they converge respectively to Umarg(d, φ∗),−Lpost(d, φ

∗), and UVNMC(d, L, φ∗) at a rate = O(T−1/2)
if N ∝ K and the assumptions are satisfied. For µ̂m+`, we combine Theorem 1 and Lemma 2 to
obtain the same O(T−1/2) convergence rates; see the supplementary material for further details.

The key property of µ̂VNMC is that we need not set M = L and can remove the asymptotic bias by
increasing M with N . We begin by training φ with a fixed value of L, decreasing the error term
‖UVNMC(d, L, φK)−UVNMC(d, L, φ∗)‖2 at the fast rateO(K−1/2) until |UVNMC(d, L, φ∗)−EIG(d)|
becomes the dominant error term. At this point, we start to increase N,M . Using the NMC
convergence results discussed in Sec. 2, if we set M ∝

√
N , then µ̂VNMC converges to EIG(d) at

a rate O((NM)−1/3). Note that the total cost of the µ̂VNMC estimator is T = O(KL + NM),
where typically M � L. The first stage, costing KL, is fast variational training of an amortized
importance sampling proposal for p(y|d) = Ep(θ)[p(y|θ, d)]. The second stage, costing NM , is
slower refinement to remove the asymptotic bias using the learned proposal in an NMC estimator.
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Table 2: Bias squared and variance from 5 runs, averaged over designs, of EIG estimators applied to
four benchmarks. We use - to denote that a method does not apply and ∗ when it is superseded by
other methods. Bold indicates the estimator with the lowest empirical mean squared error.

A/B test Preference Mixed effects Extrapolation
Bias2 Var Bias2 Var Bias2 Var Bias2 Var

µ̂post 1.33×10−2 7.15×10−3 4.26×10−2 8.53×10−3 2.34×10−3 2.92×10−3 1.24×10−4 5.16×10−5

µ̂marg 7.45×10−2 6.41×10−3 1.10×10−3 1.99×10−3 - - - -
µ̂VNMC 3.44×10−3 3.38×10−3 4.17×10−3 9.04×10−3 - - - -
µ̂m+` ∗ ∗ ∗ ∗ 3.06×10−3 5.94×10−5 6.90×10−6 1.84×10−5

µ̂NMC 4.70×100 3.47×10−1 7.60×10−2 8.36×10−2 - - - -
µ̂laplace 1.92×10−4 1.47×10−3 8.42×10−2 9.70×10−2 - - - -
µ̂LFIRE 2.29×100 6.20×10−1 1.30×10−1 1.41×10−2 1.41×10−1 6.67×10−2 - -
µ̂DV 4.34×100 8.85×10−1 9.23×10−2 8.07×10−3 9.10×10−3 5.56×10−4 7.84×10−6 4.11×10−5

One can think of the standard NMC approach as a special case of µ̂VNMC in which we naively choose
p(θ) as the proposal. That is, standard NMC skips the first stage and hence does not benefit from the
improved convergence rate of learning an amortized proposal. It typically requires a much higher
total cost to achieve the same accuracy as VNMC.

5 Related work

We briefly discuss alternative approaches to EIG estimation for BOED that will form our baselines for
empirical comparisons. The Nested Monte Carlo (NMC) baseline was introduced in Sec. 2. Another
established approach is to use a Laplace approximation to the posterior [22, 25]; this approach
is fast but is limited to continuous variables and can exhibit large bias. Kleinegesse and Gutmann
[18] recently suggested an implicit likelihood approach based on the Likelihood-Free Inference by
Ratio Estimation (LFIRE) method of Thomas et al. [41]. We also consider a method based on the
Donsker-Varadhan (DV) representation of the KL divergence [11] as used by Belghazi et al. [4]
for mutual information estimation. Though not previously considered in BOED, we include it as
a baseline for illustrative purposes. For a full discussion of the DV bound and a number of other
variational bounds used in deep learning, we refer to the recent work of Poole et al. [31]. For further
discussion of related work, see Appendix C.

6 Experiments

6.1 EIG estimation accuracy

We begin by benchmarking our EIG estimators against the aforementioned baselines. We consider
four experiment design scenarios inspired by applications of Bayesian data analysis in science and
industry. First, A/B testing is used across marketing and design [6, 19] to study population traits.
Here, the design is the choice of the A and B group sizes and the Bayesian model is a Gaussian linear
model. Second, revealed preference [36] is used in economics to understand consumer behaviour.
We consider an experiment design setting in which we aim to learn the underlying utility function of
an economic agent by presenting them with a proposal (such as offering them a price for a commodity)
and observing their revealed preference. Third, fixed effects and random effects (nuisance variables)
are combined in mixed effects models [14, 20]. We consider an example inspired by item-response
theory [13] in psychology. We seek information only about the fixed effects, making this an implicit
likelihood problem. Finally, we consider an experiment where labelled data from one region of
design space must be used to predict labels in a target region by extrapolation [27]. In summary, we
have two models with explicit likelihoods (A/B testing, preference) and two that are implicit (mixed
effects, extrapolation). Full details of each model are presented in Appendix D.

For each scenario, we estimated the EIG across a grid of designs with a fixed computational budget
for each estimator and calculated the true EIG analytically or with brute force computation as
appropriate; see Table 2 for the results. Whilst the Laplace method, unsurprisingly, performed best
for the Gaussian linear model where its approximation becomes exact, we see that our methods are
otherwise more accurate. All our methods outperformed NMC.
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(a) Convergence in N (b) Convergence in K (c) Convergence N = K (d) Fixed budget N +K

Figure 1: Convergence of RMSE for µ̂post and µ̂marg. (a) Convergence in number of MC samples N
with a fixed number K of gradient updates of the variational parameters. (b) Convergence in time
when increasing K and with N fixed. (c) Convergence in time when setting N = K and increasing
both (dashed lines represent theoretical rates). (d) Final RMSE with N + K = 5000 fixed, for
different K. Each graph shows the mean with shading representing ±1 std. err. from 100 trials.

6.2 Convergence rates

We now investigate the empirical convergence characteristics of our estimators. Throughout, we
consider a single design point from the A/B test example. We start by examining the convergence of
µ̂post and µ̂marg as we allocate the computational budget in different ways.

We first consider the convergence inN after a fixed number ofK updates to the variational parameters.
As shown in Figure 1a, the RMSE initially decreases as we increase N , before plateauing due to the
bias in the estimator. We also see that µ̂post substantially outperforms µ̂marg. We next consider the
convergence as a function of wall-clock time when N is held fixed and we increase K. We see in
Figure 1b that, as expected, the errors decrease with time and that when a small value of N = 5 is
taken, we again see a plateauing effect, with the variance of the final MC estimator now becoming the
limiting factor. In Figure 1c we take N = K and increase both, obtaining the predicted convergence
rate O(T−1/2) (shown by the dashed lines). We conjecture that the better performance of µ̂post is
likely due to θ being lower dimensional (dim = 2) than y (dim = 10). In Figure 1d, we instead fix
T = N +K to investigate the optimal trade-off between optimization and MC error: it appears the
range of K/T between 0.5 and 0.9 gives the lowest RMSE.

Figure 2: Convergence of µ̂VNMC taking
M=

√
N . ‘Steps’ refers to pre-training

of the variational posterior (i.e. K), with
0 steps corresponding to µ̂NMC. Means
and confidence intervals as per Fig. 1.

Finally, we show how µ̂VNMC can improve over NMC
by using an improved variational proposal for estimating
p(y|d). In Figure 2, we plot the EIG estimates obtained
by first running K steps of stochastic gradient with L = 1
to learn qv(θ|y, d), before increasing M and N . We see
that spending some of our time budget training qv(θ|y, d)
leads to noticeable improvements in the estimation, but
also that it is important to increase N and M . Rather than
plateauing like µ̂post and µ̂marg, µ̂VNMC continues to im-
prove after the initial training period as, albeit at a slower
O(T−1/3) rate.

6.3 End-to-end sequential experiments

We now demonstrate the utility of our methods for design-
ing sequential experiments. First, we demonstrate that our
variational estimators are sufficiently robust and fast to
be used for adaptive experiments with a class of models that are of practical importance in many
scientific disciplines. To this end, we run an adaptive psychology experiment with human participants
recruited from Amazon Mechanical Turk to study how humans respond to features of stylized faces.
To account for fixed effects—those common across the population—as well as individual variations
that we treat as nuisance variables, we use the mixed effects regression model introduced in Sec. 6.1.
See Appendix D for full details of the experiment.

To estimate the EIG for different designs, we use µ̂m+`, since it yields the best performance on our
mixed effects model benchmark (see Table 2). Our EIG estimator is integrated into a system that
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(a) Entropy (b) Posterior RMSE of ρ (c) Posterior RMSE of α (d) Posterior RMSE of u

Figure 4: Evolution of the posterior in the sequential CES experiment. (a) Total entropy of a mean-
field variational approximation of the posterior. (b)(c)(d) The RMSE of the posterior approximations
of ρ, α and u as compared to the true values used to simulate agent responses. Note the scale of the
vertical axis is logarithmic. All plots show the mean and ±1 std. err. from 10 independent runs.

presents participants with a stimulus, receives their response, learns an updated model, and designs
the next stimulus, all online. Despite the relative simplicity of the design problem (with 36 possible
designs) using BOED with µ̂m+` leads to a more certain (i.e. lower entropy) posterior than random
design; see Figure 3.

Figure 3: Evolution of the posterior entropy
of the fixed effects in the Mechanical Turk
experiment in Sec. 6.3. We depict the mean
and ±1 std. err. from 10 experimental trials.

Second, we consider a more challenging scenario
in which a random design strategy gleans very lit-
tle. We compare random design against two BOED
strategies: µ̂marg and µ̂NMC. Building on the revealed
preference example in Sec. 6.1, we consider an ex-
periment to infer an agent’s utility function which we
model using the Constant Elasticity of Substitution
(CES) model [2] with latent variables ρ,α, u. We
seek designs for which the agent’s response will be
informative about θ = (ρ,α, u). See Appendix D for
full details. We estimate the EIG using µ̂marg because
the dimension of y is smaller than that of θ, and select
designs d ∈ [0, 100]6 using Bayesian optimization.
To investigate parameter recovery we simulate agent
responses from the model with fixed values of ρ,α, u.
Figure 4 shows that using BOED with our marginal
estimator reduces posterior entropy and concentrates
more quickly on the true parameter values than both baselines. Random design makes no inroads
into the learning problem, while BOED based on NMC particularly struggles at the outset when
p(θ|d1:t−1, y1:t−1), the prior at iteration t, is high variance. Our method selects informative designs
throughout.

7 Discussion

We have developed efficient EIG estimators that are applicable to a wide range of experimental design
problems. By tackling the double intractability of the EIG in a principled manner, they provide
substantially improved convergence rates relative to previous approaches, and our experiments show
that these theoretical advantages translate into significant practical gains. Our estimators are well-
suited to modern deep probabilistic programming languages and we have provided an implementation
in Pyro. We note that the interplay between variational and MC methods in EIG estimation is not
directly analogous to those in standard inference settings because the NMC EIG estimator is itself
inherently biased. Our µ̂VNMC estimator allows one to play off the advantages of these approaches,
namely the fast learning of variational approaches and asymptotic consistency of NMC.
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A Details for variational estimators

The proofs in A.1 and A.2 are included for completeness.

A.1 Variational posterior µ̂post

We require valid approximations qp(θ|y, d) to have the same support as p(θ|y, d). Recall

Lpost(d) = Ep(y,θ|d)

[
log

qp(θ|y, d)

p(θ)

]
(16)

and

EIG(d) = Ep(y,θ|d)

[
log

p(θ|y, d)

p(θ)

]
(17)

We aim to show EIG(d) ≥ Lpost(d). Following [3], we have

EIG(d)− Lpost(d) =Ep(y,θ|d)

[
log

p(θ|y, d)

p(θ)
− log

qp(θ|y, d)

p(θ)

]
(18)

=Ep(y,θ|d)

[
log

p(θ|y, d)p(θ)

p(θ)qp(θ|y, d)

]
(19)

=Ep(y|d)

[
Ep(θ|y,d)

[
log

p(θ|y, d)

qp(θ|y, d)

]]
(20)

=Ep(y|d) [KL (p(θ|y, d)||qp(θ|y, d))] (21)

≥0. (22)

To further prove that the bound is tight, we note that the penultimate term
Ep(y|d) [KL (p(θ|y, d)||qp(θ|y, d))] equals 0 if and only if KL (p(θ|y, d)||qp(θ|y, d)) = 0 for
almost all y (i.e. the union of all y for which this does not hold has measure zero). The occurs if and
only if qp(θ|y, d) = p(θ|y, d) for almost all y, θ.

A.2 Variational marginal µ̂marg

We now demonstrate that Umarg(d) is an upper bound on EIG(d). Proceeding in the same manner as
for µ̂post, we find

Umarg(d)− EIG(d) =Ep(y,θ|d)

[
log

p(y|θ, d)

qm(y|d)
− log

p(y|θ, d)

p(y|d)

]
(23)

=Ep(y,θ|d)

[
log

p(y|θ, d)p(y|d)

qm(y|d)p(y|θ, d)

]
(24)

=Ep(y|d)

[
log

p(y|d)

qm(y|d)

]
(25)

=KL (p(y|d)||qm(y|d)) (26)
≥0. (27)

Again, the bound is tight if and only if qm(y|d) = p(y|d) almost everywhere.

A.3 Variational NMC µ̂VNMC

We now prove Lemma 1 from the main paper, duplicating the Lemma itself below for convenience.
Lemma 1. For any given model p(θ)p(y|θ, d) and valid qv(θ|y, d),

1. EIG(d) = limL→∞ UVNMC(d, L) ≤ UVNMC(d, L2) ≤ UVNMC(d, L1) ∀L2 ≥ L1 ≥ 1,

2. UVNMC(d, L) = EIG(d) ∀L ≥ 1 if qv(θ|y, d) = p(θ|y, d) ∀y, θ,

3. UVNMC(d, L)−EIG(d)=Ep(y|d)

[
KL
(∏L

`=1 qv(θ`|y, d)
∣∣∣∣ 1
L

∑L
`=1 p(θ`|y, d)

∏
k 6=` qv(θk|y, d)

)]
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Proof. Starting with proving the first result in lemma, we first recall the definition of UVNMC(d, L)
itself,

UVNMC(d, L) = E

[
log p(y|θ0, d)− log

1

L

L∑

`=1

p(y, θ`|d)

qv(θ`|y, d)

]
(28)

where the expectation is taken over y, θ0:L ∼ p(y, θ0|d)
∏L
`=1 qv(θ`|y, d). We consider positive

integers L2 ≥ L1. We let δ = UVNMC(d, L1)− UVNMC(d, L2). Then,

δ = E

[
log

1

L2

L2∑

`=1

p(y, θ`|d)

qv(θ`|y, d)

]
− E

[
log

1

L1

L1∑

`=1

p(y, θ`|d)

qv(θ`|y, d)

]
. (29)

We now proceed as in [7]. Let I1, ..., IL1
be distinct indices drawn uniformly from 1, ..., L2. Then,

1

L2

L2∑

`=1

p(y, θ`)

qv(θ`|y, d)
= EI1,...,IL1


 1

L1

L1∑

j=1

p(y, θIj )

qv(θIj |y, d)


 (30)

So

δ = E


log


EI1:L1


 1

L1

L1∑

j=1

p(y, θIj )

qv(θIj |y, d)






− E

[
log

1

L1

L1∑

`=1

p(y, θ`|d)

qv(θ`|y, d)

]
, (31)

then by Jensen’s Inequality

δ ≥ E


EI1:L1


log


 1

L1

L1∑

j=1

p(y, θIj )

qv(θIj |y, d)






− E

[
log

1

L1

L1∑

`=1

p(y, θ`|d)

qv(θ`|y, d)

]
(32)

≥ E

[
log

1

L1

L1∑

`=1

p(y, θ`|d)

qv(θ`|y, d)

]
− E

[
log

1

L1

L1∑

`=1

p(y, θ`|d)

qv(θ`|y, d)

]
(33)

≥ 0 (34)

where we have used that θI1 , ..., θIL1

d
= θ1, ..., θL1

. This shows that UVNMC(d, L1) ≥ UVNMC(d, L2).
For the limit limL→∞ UVNMC(d, L) we first fix some y for which p(y|d) > 0 and consider

UVNMC(d, L, y) = E

[
log p(y|θ0, d)− log

1

L

L∑

`=1

p(y, θ`|d)

qv(θ`|y, d)

]
. (35)

with the expectation taken over p(θ0|y, d)
∏L
`=1 qv(θ`|y, d). Since p(y, θ|d)/qv(θ|y, d) is bounded

by assumption, the Strong Law of Large Numbers implies that, in limit of large L,

1

L

L∑

`=1

p(y, θ`|d)

qv(θ`|y, d)
→ p(y|d) a.s. (36)

Furthermore, using the same argument as before, UVNMC(d, L1, y) ≥ UVNMC(d, L2, y) whenever
L2 ≥ L1. Thus the Bounded Convergence Theorem implies

UVNMC(d, L, y) ↓ Ep(θ0|y,d)[log p(y|θ0, d)− log p(y|d)] as L→∞ (37)

so, taking expectations of p(y|d), by the Monotone Convergence Theorem

UVNMC(d, L) ↓ Ep(y,θ0|d)[log p(y|θ0, d)− log p(y|d)] = EIG(d) as L→∞. (38)

For the second result, we simply note that

p(y, θ|d)

p(θ|y, d)
=
p(y, θ|d)
p(y,θ|d)
p(y|d)

= p(y|d) (39)

Finally, for the third result, we proceed as in [21]. We have

UVNMC(d, L)− EIG(d) = E

[
log p(y|d)− log

1

L

l∑

`=1

p(y, θ`|d)

qv(θ`|y, d)

]
(40)
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where the expectation is over p(y, θ0|d)
∏L
`=1 qv(θ`|y, d).

Then

UVNMC(d, L)− EIG(d) = E

[
− log

1

L

L∑

`=1

p(θ`|y, d)

qv(θ`|y, d)

]
(41)

= E

[
log

∏L
`=1 qv(θ`|y, d)

1
L

∑L
`=1 p(θ`|y, d)

∏
k 6=` qv(θk|y, d)

]
(42)

= E

[
log

∏L
`=1 qv(θ`|y, d)

P (θ1:L|y, d)

]
(43)

= Ep(y|d)

[
KL

(
L∏

`=1

qv(θ`|y, d)||P (θ1:L|y, d)

)]
(44)

where P (θ1:L|y, d) = 1
L

∑L
`=1 p(θ`|y, d)

∏
k 6=` qv(θk|y, d).

A.4 Variational marginal + likelihood µ̂m+`

We now prove Lemma 2 from the main paper, duplicating the Lemma itself below for convenience.
Lemma 2. For any given model p(θ)p(y|θ, d) and valid qm(y|d) and q`(y|θ, d), we have

|Im+`(d)− EIG(d)| ≤ −Ep(y,θ|d)[log qm(y|d) + log q`(y|θ, d)] + C, (13)

where C = −H[p(y|d)] − Ep(θ) [H(p(y|θ, d)] does not depend on qm or q`. Further, the RHS of
(13) is 0 if and only if qm(y|d) = p(y|d) and q`(y|θ, d) = p(y|θ, d) for almost all y, θ.

Proof. We aim to bound |Im+`(d)− EIG(d)|. Let δ = Im+`(d)− EIG(d). We have

δ = Ep(y,θ|d)

[
log

q`(y|θ, d)

qm(y|d)

]
− Ep(y,θ|d)

[
log

p(y|θ, d)

p(y|d)

]
(45)

= Ep(y,θ|d)

[
log

q`(y|θ, d)

qm(y|d)
− log

p(y|θ, d)

p(y|d)

]
(46)

= Ep(y,θ|d)

[
log

q`(y|θ, d)

qm(y|d)
− log

p(y|θ, d)

qm(y|d)
+ log

p(y|θ, d)

qm(y|d)
− log

p(y|θ, d)

p(y|d)

]
(47)

= −Ep(y,θ|d)

[
log

qm(y|d)p(y|θ, d)

q`(y|θ, d)qm(y|d)

]
+ Ep(y,θ|d)

[
log

p(y|θ, d)p(y|d)

qm(y|d)p(y|θ, d)

]
(48)

= −Ep(θ)
[
Ep(y|θ,d)

[
log

p(y|θ, d)

q`(y|θ, d)

]]
+ Ep(y|d)

[
log

p(y|d)

qm(y|d)

]
(49)

= −Ep(θ) [KL(p(y|θ, d)||q`(y|θ, d))] + KL(p(y|d)||qm(y|d)). (50)
So, by the triangle inequality

|δ| ≤ Ep(θ) [KL(p(y|θ, d)||q`(y|θ, d))] + KL(p(y|d)||qm(y|d)). (51)
We can rewrite the RHS using the following relation

KL(p(x)||q(x)) = Ep(x)

[
log

p(x)

q(x)

]
(52)

= Ep(x)[log p(x)]− Ep(x)[log q(x)] (53)

= −H[p(x)]− Ep(x)[log q(x)]. (54)
This gives us
|δ| ≤ Ep(θ) [−H(p(y|θ, d)]− Ep(y,θ|d)[log q`(y|θ, d)]−H[p(y|d)]− Ep(y,|d)[log qm(y|d)] (55)

≤ −Ep(y,θ|d)[log qm(y|d) + log q`(y|θ, d)]−H[p(y|d)]− Ep(θ) [H(p(y|θ, d)] (56)
as required.

Finally, from (51) we see that the error bound is tight if and only if both KL-divergences are 0 if and
only if q`(y|θ, d) = p(y|θ, d) and qm(y|d) = p(y|d) for almost all y, θ.
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We conclude with an additional observation. Suppose that we set qm(y|d) = Ep(θ)[q`(y|θ, d)]. This
could be possible for instance when θ takes finitely many values. In this case, Im+`(d) is actually a
lower bound on EIG(d). This is in contrast to the general case when qm and q` are learned separately,
in which it is neither an upper nor a lower bound.

To show that Im+`(d) is a lower bound when qm(y|d) = Ep(θ)[q`(y|θ, d)], we begin with the
Donsker-Varadhan bound [11]

EIG(d) ≥ Ep(y,θ|d)[T (y, θ)]− log
(
Ep(θ)p(y|d)[e

T (y,θ)]
)
. (57)

Substituting T (y, θ) = log(q`(y|θ, d)/qm(y|d)) we have

EIG(d) ≥ Ep(y,θ|d)

[
log

q`(y|θ, d)

qm(y|d)

]
− log

(
Ep(θ)p(y|d)

[
q`(y|θ, d)

qm(y|d)

])
(58)

≥ Im+`(d)− log

(
Ep(y|d)

[
Ep(θ)

{
q`(y|θ, d)

qm(y|d)

}])
(59)

≥ Im+`(d)− log

(
Ep(y|d)

[Ep(θ) {q`(y|θ, d)}
qm(y|d)

])
(60)

≥ Im+`(d)− log

(
Ep(y|d)

[
qm(y|d)

qm(y|d)

])
(61)

≥ Im+`(d). (62)

B Details for convergence rates

We now provide the details for Theorem 1. Key to proving the aspect of the Theorem relating to
the convergence of the variational parameter φK to φ∗ is Assumption 1. Points 1-5 correspond to
assumptions H2’, H3, H4, H6, and H7 of [28]; our proof will rely heavily on theirs. We note that
also that our measurability assumption made in the Theorem itself means that their assumption H1 is
automatically satisfied.
Assumption 1. Assume:

1. The function φ 7→ f(X,φ) is almost surely convex in its second argument and differentiable
with Lipschitz continuous gradient, i.e. ∀φ1, φ2 ∈ Φ:

E(‖∇f(X,φ1)−∇f(X,φ2)‖2) ≤ C‖φ1 − φ2‖
with probability 1 for some C.

2. The function f is ν-strongly convex; that is, for all φ1, φ2 ∈ Φ:

f(X,φ1) ≥ f(X,φ2) +∇f(X,φ2)T (φ1 − φ2)

+ ν
2‖φ1 − φ2‖2

3. There exists σ > 0 such that E[‖∇f(X,φ∗)‖2) ≤ σ2

4. The function φ 7→ f(X,φ) is almost surely twice differentiable with Lipschitz continuous
Hessian Hf , i.e. ∀φ1, φ2 ∈ Φ:

E(‖(Hf)(X,φ1)− (Hf)(X,φ2)‖) ≤ C ′‖φ1 − φ2‖

5. There exists τ > 0 such that E[‖∇f(X,φ∗)‖4] ≤ τ4 and there exists a positive definite
operator Σ such that E[∇f(X,φ∗)⊗∇f(X,φ∗)] 4 Σ

6. The function µ is Lipschitz continuous

It should be noted that, though relatively standard, these assumptions are also quite strong, particularly
the assumption of strong convexity of f , and may well not hold in practice. In short, the stochastic
gradient scheme used in optimizing the bounds may only converge toward a local optimum of
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the bound φ†, rather than the global optimum φ∗. When this happens the behavior and rates of
convergence will generally be the same, but the error breakdown will become

‖µ̂(d, φK)− EIG(d)‖2
≤ ‖µ̂(d, φK)− B(d, φK)‖2 (63a)

+
∥∥B(d, φK)− B(d, φ†)

∥∥
2

(63b)

+
∣∣B(d, φ†)− EIG(d)

∣∣ . (63c)

where ∣∣B(d, φ†)− EIG(d)
∣∣ ≥ |B(d, φ∗)− EIG(d)| .

We now present our proof for the result, repeating the Theorem itself for convenience.
Theorem 1. Let X be a measurable space and Φ be a convex subset of a finite dimensional inner
product space. Let X1, X2, ... be i.i.d. random variables taking values in X and f : X × Φ→ R be
a measurable function. Let

µ(φ) , E[f(X1, φ)] ≈ µ̂N (φ) , 1

N

∑N

n=1
f(Xn, φ)

and suppose that supφ∈Φ ‖f(X1, φ)‖2 < ∞. Then supφ∈Φ ‖µ̂N (φ)− µ(φ)‖2 = O(N−1/2). Sup-
pose further that Assumption 1 in Appendix B holds and that φ∗ is the unique minimizer of µ. After
K iterations of the Polyak-Ruppert averaged stochastic gradient descent algorithm of [28] with
gradient estimator ∇φf(Xt, φ), we have ‖µ(φK)− µ(φ∗)‖2 = O(K−1/2) and, combining with the
first result,

‖µ̂N (φK)− µ(φ∗)‖2 = O(N−1/2 +K−1/2) = O(T−1/2) if N ∝ K.

Proof of Theorem 1

Proof. We begin by establishing the uniform convergence of µ̂N (φ) to µ(φ), for which we simply
use the L2 weak law of large numbers. Specifically, we let Yn = f(Xn, φ) and εN (φ) = ‖µ̂N (φ)−
µ(φ)‖2, then

ε2
N (φ) = E



[

1

N

N∑

n=1

(Yn − EYn)

]2

 (64)

= E

(
1

N2

N∑

n=1

(Yn − EYn)2

)
(65)

=
1

N2
·NVar(Yn) (66)

≤ 1

N
sup
φ∈Φ
‖f(X1, φ)‖22 (67)

which is bounded by assumption. Thus

sup
φ∈Φ

εN (φ) = O(N−1/2) (68)

as required.

We turn now to the stochastic gradient descent convergence. We begin by applying Theorem 3 of
[28] using points 1-5 of Assumption 1 to give

‖φK − φ∗‖2 = O(K−1/2) (69)

and (see [28] page 4)
Eµ(φK)− µ(φ∗) = O(K−1/2). (70)

To establish L2 convergence of the function values, it remains to control the variance of µ(φK). We
now invoke point 6 of Assumption 1 to see that, for some constant B (namely the Lipschitz constant
for µ),

Var[µ(φK)] = E
[
(µ(φK)− E [µ(φK)])

2
]

(71)
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≤ E
[
(µ(φK)− µ(EφK))2

]
(72)

≤ B2E
[
(φt − Eφt)2

]
(73)

≤ B2‖φK − φ∗‖22. (74)

By (69) we conclude
√

Var[µ(φK)] = O(K−1/2). Thus µ(φK) converges in L2 at the required rate.

Finally, if εK = ‖µ̂K(φK)− µ(φ∗)‖2 then

εK ≤ ‖µ̂K(φK)− µ(φK)‖2 + ‖µK(φK)− µ(φ∗)‖2
≤ ‖µ̂K(φK)− µ(φK)‖2 + sup

φ∈Φ
‖µ̂K(φ)− µ(φ)‖2

= O(N−1/2 +K−1/2)

= O(T−1/2)

as required.

Finally, we discuss the necessary extensions for Im+`. The assumptions of the Theorem are subtly
different in this case. Specifically, we require Assumption 1 to hold for the integrand of F rather than
the integrand of Im+`, where F(d, φ) = −E[log qm(y|d) + log q`(y|θ, d)] + C is the loss function
that we use to train φ, and require Im+` to be Lipschitz continuous in φ.

The Monte Carlo error is no different in this setting. However, φ∗ is optimal with respect to F(d, φ)
rather than Im+` and the asymptotic bias term is |Im+`(d, φ

∗)− EIG(d)| ≤ F(d, φ∗) by Lemma 2.
For the optimization term, we have from equation (69) that ‖φK − φ∗‖2 = O(K−1/2). Then by the
Lipschitz assumption on Im+`, we have ‖Im+`(d, φk)− Im+`(d, φ

∗)‖2 = O(K−1/2). The rest of
the proof now goes through as above.

C Related work

In this section, we provide a more detailed discussion of existing techniques for EIG estimation to
complement Sec. 5 in the main text.

One established approach is to use a Laplace approximation to the posterior to make fast approxi-
mations of EIG [22, 25]

µ̂laplace(d) , 1

N

N∑

n=1

[H[p(θ)]−H[q(θ|yn, d)]] (75)

where q(θ|yn, d) is a Laplace approximation to p(θ|yn, d) that is computed once for each yn ∼
p(y|d).

Kleinegesse and Gutmann [18] recently suggested an implicit likelihood approach that directly
approximates the ratio r(d, θ, y) = p(y|θ, d)/p(y|d) using samples from p(y|θ, d) and p(y|d) and
the Likelihood-Free Inference by Ratio Estimation (LFIRE) method suggested by [41], which is
itself based around logistic regression. This yields the estimator

µ̂LFIRE(d) , 1

N

N∑

n=1

log r̂(d, θn, yn) (76)

where log r̂(d, θn, yn) is estimated separately for each pairs of samples yn, θn.

In principal one could also exploit the equivalence between EIG and MI and use other existing
MI estimation methods, a number of which were recently summarized by [31]. Of particular
note, Belghazi et al. [4] use a bound on MI in the context of generative adversarial neural network
training that is based on the Donsker-Varadhan (DV) representation of the KL divergence [11].
Specifically, they introduce a parametrized approximation T (y, θ|d, φ) to log p(y,θ|d)

p(θ)p(y|d) and then
optimize the lower bound

LDV(d) , Ep(y,θ|d)[T (y, θ|d, φ)]− log
(
Ep(θ)p(y|d)[e

T (y,θ|d,φ)]
)
. (77)

The estimator µ̂DV is then produced in an analogous manner to µ̂post.
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The EIG has been applied by a number of authors in specific contexts. For instance, the EIG has
been used to formulate acquisition functions in Bayesian optimization [16]. More recently, Ma et al.
[26] used an EIG-type objective to select features rather than designs for a partial VAE model. The
EIG estimation exploits the model structure of the partial VAE. Additionally, and in contrast to this
paper, approximations learned using the ELBO are used rather than approximations that are trained
using variational objectives that are directly tied to EIG estimation. For further discussion on the
implications of using the ELBO (i.e. the reverse KL divergence) in EIG estimation settings, see
Appendix G.

As mentioned previously, mutual information bounds are of interest in traditional signal processing
[3] and of increasing interest in the deep learning community [31]—although to the best of our
knowledge they have not been applied to BOED before. Interestingly, it is lower bounds that are of
primary importance in the deep learning setting because of the interplay between MI estimation and
the subsequent gradient-based optimization over parameters. This is in contrast to this work, in which
we maximize EIG over designs using Bayesian optimization—allowing the use of estimators such as
µ̂m+` that are not, in expectation, bounds.

D Experiment details

Computing All experiments were run on a machine with 32818560 kB mem-
ory, 8 Intel(R) Core(TM) i7-6700 CPU @ 3.40GHz processors, running Fedora 28,
Python 3.6.8, Pytorch 1.1.0. To reproduce the results presented in the paper, see
https://github.com/ae-foster/pyro/tree/vboed-reproduce. The methods in
this paper form part of Pyro’s OED support, the documentation for which is provided at
http://docs.pyro.ai/en/stable/contrib.oed.html.

D.1 EIG estimation accuracy

A/B test We consider a classical A/B test, commonly used in marketing and design applications.
Here the experiment design is the choice of group sizes: n participants are split between groups A
and B of size nA and n− nA, respectively. For each participant we measure a continuous response y.
We consider a linear data analysis model

θ ∼ N(0,Σθ) y|θ, d ∼ N(Xdθ, I) (78)
where Xd is the n× 2 design matrix with (1 0) for the first nA rows and (0 1) for the remainder.

In this example we set the number of participants to be n = 10 with 11 designs (nA = 0, ..., 10) and
the prior covariance matrix to be

Σθ =

(
102 0
0 1.822

)
(79)

We chose families of variational distributions that include the true posterior (or true marginal). For
the amortised posterior, we set φ = (A,Σp) with φ trained separately for each d and let

qp(θ|y, d, φ) ∼ N(Ay,Σp) (80)
whereA is a 10×2 matrix and Σp is positive definite. For the marginal, we simply take φ = (µm,Σm)
and

qm(y|d, φ) ∼ N(µm,Σm). (81)

For NMC and Laplace, no variational families need to be specified.

For LFIRE, we used a parametrization φ = (b, δ,Λ) and used the ratio estimate
log r̂(y|θ, d, φ) = b− (y − δ)TΛ(y − δ) (82)

where Λ is positive definite. This form was chosen to mimic the approximation made by the posterior
method, and so reduce the effect of architecture on performance.

For DV, we used a similar critic, namely we set φ = (A,Λ) and
T (y, θ|d, φ) = −(θ −Ay)TΛ(θ −Ay) (83)

where Λ is positive definite.

The ground truth EIG(d) was computed analytically. In Table 2, each estimator was allowed 10
seconds computation.
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Preference We consider searching for an agent’s utility indifference point, using responses that are
both censored and corrupted with non-uniform noise. Let d ∈ R and

θ ∼ N(µθ, σ
2
θ)

η|θ, d ∼ N(d− θ, σ2
η(1 + |d|)2)

y = f(η)

(84)

where

f : R→ [ε, 1− ε] (85)

x 7→





ε if x ≤ logit(ε)
1− ε if x ≥ logit(1− ε)

1
1−e−x otherwise

(86)

and logit(p) = log p− log(1− p).

For this example we set µθ = −20, σθ = 20 and ση = 1. We took designs on a linearly spaced grid
in [−80, 80]. For the variational family for the posterior, we took φ = (w, σ, µ0, σ0, µ1, σ1) and then

qp(θ|y, d, φ) ∼ N(µp, σ
2
p ) where η̂ = d− logit(y) (87)

µp = wη̂ + (1− w)µθ + µ0 1{y=ε}+µ1 1{y=1−ε} (88)

σ2
p = σ2 + σ2

0 1{y=ε}+σ2
1 1{y=1−ε} (89)

For the marginal, we simply took φ = (µm, σm) and

qm(y|d, φ) ∼ f#N(µm, σ
2
m). (90)

where # denotes the push-forward measure. We note that this variational family contains the true
marginal.

For LFIRE, we used the parametrization φ = (b, b0, b1, δ, λ) with ratio estimate

η̂ = d− logit(y) (91)

log r̂(y|θ, d, φ) = b− λ(η̂ − δ)2 + b0 1{y=ε}+b1 1{y=1−ε} (92)

For DV, the critic had parametrization φ = (b0, b1, δi, δ0, δ1, λi, λ0, λ1) and we set

η̂ = d− logit(y) (93)
λ = λi + λ0 1{y=ε}+λ1 1{y=1−ε} (94)

δ = δi + δ0 1{y=ε}+δ1 1{y=1−ε} (95)

T (y, θ|d, φ) = −λ(η̂ − δ)2 + b0 1{y=ε}+ b1 1{y=1−ε} (96)

Both these forms were chosen to minimize the differences between the functional forms used for
different methods.

The ground truth EIG(d) was computed by running the marginal method, which is statistically
consistent for this example because the true marginal is contained in the variational family, to
convergence. The posterior and Laplace methods are both asymptotically biased (see Figure 5) and in
this case both make the same (Gaussian) distributional assumption. The posterior method, however,
produces better EIG estimates. For the benchmarking results in Table 2, 10 seconds computation was
allowed.

Mixed Effects Regression We consider BOED for a mixed effects regression model with a non-
linear linking function that will also serve as the basis for the adaptive experiment we run in Sec. 6.3.
This class of models is commonly used for analyzing data in a variety of scientific disciplines, where
including nuisance variables can be a critical component of the model. In our adaptive experiment,
the nuisance variables—i.e. the random effects—are used to account for the variability of individual
human participants. Because of the presence of nuisance variables these implicit likelihood models
represent a significant challenge for BOED.

We begin by describing the experiment set-up. Participants were presented with a question of the
form seen in Figure 6 with the possible images shown in Figure 7. There were two image feature
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Figure 5: EIG curves for the Preference example, with estimators run until variance is negligible and
iterates of φ are stable to highlight the asymptotic bias.

dimensions with 3 levels each. A single image i could therefore be represented as a 1 × 6 matrix
Xi with two entries 1 and the rest 0. With the left image i1 and right image i2, the question was
represented as Xd = Xi1 −Xi2 encoding the assumed left-right symmetry. We then considered a
model for the ith participant

θ ∼ N(0,Σθ) (97)

σ−2
ψ ∼ Γ(αψ, βψ) (98)

ψi|σψ ∼ N(0, σ2
ψI6) (99)

σ−2
k ∼ Γ(αk, βk) (100)

log ki|σk ∼ N(0, σ2
k) (101)

η|θ, ψi, ki, d ∼ N(ki(Xdθ +Xdψi), σ
2
η) (102)

y = f(η) (103)

where f is the censored sigmoid defined in (86) and i ∈ {1, ..., 8} as there were 8 different partici-
pants.

The actual prior values of the parameters used were

Σθ = 100I6 ση = 10 (104)
αψ = βψ = αk = βk = 2 (105)

We begin by discussing the variational families used to estimate the EIG.

For the posterior estimator of EIG, we took φ = (A,Σp) and

η̂ = logit(y) (106)
qp(θ|y, d, φ) ∼ N(Aη̂,Σp) (107)

For the marginal + likelihood estimator, we set φ = (µm, σm, µ`, σ`, ξ) and took

qm(y|d, φ) ∼ f#N(µm, σ
2
m) (108)

q`(y|θ, d, φ) ∼ f#N(eξXdθ + µ`, σ
2
` ) (109)

For LFIRE, we used φ = (b, δ, λ) and then took

η̂ = logit(y) (110)

log r̂(y|θ, d, φ) = b− λ(η̂ − δ)2 (111)

For DV, we used φ = (λ, ξ) and

η̂ = logit(y) (112)

T (y, θ|d, φ) = −λ(η̂ − eξXdθ)
2 (113)
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For benchmarking, we computed the ground truth using a variant of NMC. Specifically, we note that

p(y|d) = Ep(θ,ψ,k)[p(y|θ, ψ, k, d)] (114)

p(y|θ, d) = Ep(ψ,k)[p(y|θ, ψ, k, d)] (115)

and for this model, we can sample directly from p(ψ, k). These identities allow us to estimate the
marginal and likelihood by Monte Carlo, and then combine in a NMC estimator for EIG(d). Whilst
inefficient, this estimator is statistically consistent.

We allowed 60 seconds computation per estimator to compute the results of Table 2. Encouragingly,
we find that our variational estimators outperform the LFIRE and DV baselines on this model and
exhibit low errors even though they both make suboptimal distributional assumptions about the
posterior/marginal.

Extrapolation We consider designing experiments to reduce posterior uncertainty in the model
prediction at another point in design space—a point that we cannot experiment on directly. For this
example, we take ψ ∼ N(µψ,Σψ) and

θ|ψ ∼ Bernoulli(logit−1(Xθψ))

y|ψ, d ∼ Bernoulli(logit−1(Xdψ))

where Xθ =
(
1 − 1

2

)
and Xd = (−1 d) for d ∈ R. Interestingly, this model admits efficient

sampling of y, θ ∼ p(y, θ|d) but not y ∼ p(y|θ, d). Therefore, whilst the posterior, marginal +
likelihood and DV methods are all applicable, LFIRE is not.

For the posterior method we set φ = (l0, l1) and

lp(y) = l1y + l0(1− y) (116)

qp(θ|y, d, φ) ∼ Bernoulli(logit−1(lp(y))). (117)

We computed the prior entropy, which is not analytically tractable here, using a MC estimator, noting
that θ has a finite sample space.

For the marginal + likelihood method, we let φ = (l, l0, l1) and then

qm(y|d, φ) ∼ Bernoulli(logit−1(l)) (118)
l`(θ) = l1θ + l0(1− θ) (119)

q`(y|θ, d, φ) ∼ Bernoulli(logit−1(l`(θ))). (120)

Finally, for DV, we let φ = (wy, wθ, wyθ) and took

T (θ, y|d, φ) = wyy + wθθ + wyθyθ. (121)

The ground truth EIG was computed using MC, noting that the sample spaces for y, θ are finite in
this example. 10 seconds computation per methods was allowed for the results in Table 2.

D.2 End-to-end sequential experiments

Mechanical Turk experiment We begin by describing the experiment itself. Participants were
presented with a question of the form seen in Figure 6 with the possible images shown in Figure 7.
There were two image feature dimensions with 3 levels each. A single image i could therefore
be represented as a 1 × 6 matrix Xi with two entries 1 and the rest 0. With the left image i1 and
right image i2, the question was represented as Xd = Xi1 −Xi2 encoding the assumed left-right
symmetry.

The model and EIG estimation were the same as the mixed effects model in Sec. D.1. When
optimizing the EIG to select designs dt, we estimated EIG across all candidate designs. We allowed a
30s turnaround to learn the posterior from the previous data, estimate the EIG, select the next design,
and present it to the user. We estimated the EIG in parallel for all 36 designs to select the best design
at each step. For each independent run of the experiment there were 8 participants, each answering
10 questions. This allowed the interplay between fixed effects and random effects to be apparent.
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Figure 6: A screenshot of the question answering interface used by human participants in the adaptive
experiment in Sec. 6.3.

Figure 7: The nine characters we used in the adaptive experiment in Sec. 6.3. They vary along two
feature dimensions: the mouth (smile, frown, showing teeth) and eyebrows.

Figure 8: Evolution of the posterior entropy of the fixed effects in the Mechanical Turk experiment in
Sec. 6.3 with simulated data. We depict the mean and ±1 std. err. from 10 experimental trials.
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Because we used this model to run an adaptive experiment, we required a variational family to learn
the full posterior (over random effects and hyperparameters as well as θ).

For the full variational inference of the posterior used when we receive actual data, we used a partial
mean-field approximation. Specifically, we set q(θ, σψ, (ψi)8

i=1, σk, (ki)
8
i=1) to be

θ ∼ N(µθ,Σθ) (122)

σ−2
ψ ∼ Γ(αψ, βψ) (123)

ψi|θ ∼ N(A(θ − µθ) + µψi ,Σψi) (124)

σ−2
k ∼ Γ(αk, βk) (125)

log ki ∼ N(µki , σ
2
ki) (126)

and we learned the variational parameters µθ,Σθ, αψ, βψ, A, µψi
,Σψi

, αk, βk, µki , σki by conven-
tional (not amortized) variational inference. Note that, under this approximate posterior, θ is multi-
variate Gaussian so we can compute its entropy analytically.

Finally we ran an additional experiment identical to the first, but using simulated data rather than
human responses. We took

θ = (−30 30 0 −12 −6 18) . (127)

We simulated the random effects ψ, k from the prior and used the prior value ση = 10. The entropy
results are presented in Figure 8. As expected, BOED decreases posterior uncertainty more quickly.

D.3 Constant Elasticity of Substitution (CES) experiment

We begin by describing the experiment set-up. The economic agent is presented with a sequence
of designs d. Each designs comprises two baskets x and x′ of goods. The agent then indicates
which basket they prefer on a one-dimensional slider—they may indicate a strong preference, weak
preference, or indifference.

To model the agent’s responses, we use the CES utility model [2] which defines a utility

U(x) =

(∑

i

xρiαi

)1/ρ

(128)

for a basket of goods x. In this experiment, we took baskets x ∈ [0, 100]3 representing non-negative
quantities of three commodities.

Extending the preference example in the previous section, we assume the agent, when asked to
compare baskets x and x′ and indicate their preference on a slider, base their response on U(x)−
U(x′). Specifically, we use the following likelihood model

ρ ∼ Beta(aρ, bρ) (129)
α ∼ Dirichlet(cα) (130)

log u ∼ N(µu, σ
2
u) (131)

η|ρ,α, d ∼ N(u · (U(x)− U(x′)), σ2
ηu

2(1 + ‖x− x′‖)2) (132)

y = f(η) (133)

This represents a challenging experiment design problem for a number of reasons. First, for large
values of U(x)− U(x′) the agent’s response will be predictable gaining little information. For very
different baskets (‖x− x′‖ large) the responses will be noisy indicating our intuition that it is more
difficult to compare very different baskets. However, very similar baskets will have similar utilities
and the agent will be predictably indifferent. Optimal designs therefore lie in a sweet spot where:
i) baskets are similar to avoid high noise regions, but dissimilar enough to be informative; and ii)
the difference in utility is close to 0 under the current posterior. BOED is able to trade off these
considerations in a principled manner.

For this specific example we took

aρ = bρ = 1 cα = (1, 1, 1) (134)
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µu = 1 σu = 3 (135)
ση = 0.005 (136)

To estimate the EIG, we used a marginal guide based on the one used in the preference example.
Specifically, we set φ = (µm, σm, p0, p1) and

r(y|d, φ) ∼ f#N(µm, σ
2
m), (137)

qp(y|d, φ) =





ε with probability p0

1− ε with probability p1

r(y|d, φ) with probability 1− p0 − p1

(138)

where # denotes the push-forward measure. This is simply a mixture of a discrete distribution on
end-points with a sigmoid transformed Gaussian.

To select designs, we used Bayesian optimization with a Matern52 kernel with lengthscale 20 and
variance set empirically. Both µ̂marg and µ̂NMC were allowed the same time budget to select designs
and used an identical Bayesian optimization procedure. Random designs were chosen uniformly on
[0, 100]6.

To learn the posterior at subsequent steps we used a mean-field variational approximation with
the same families as the prior. That is, we updated the parameters aρ, bρ, cα, µu, σu and left
the structure otherwise intact. The RMSEs of Figure 4 were expectations over the posterior:(
Ep(θ|d1:t,y1:t)[‖θ − θ∗‖2]

)1/2
.

E Additional experiments

E.1 Death process
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Figure 9: EIG surfaces estimated by four methods for the two-dimensional design (t1, t2) for the
continuous time model described in Sec. E.1. The optimal design (t∗1, t

∗
2) determined by each method

is indicated with a cross. The posterior method with a LogNormal variational distribution yields
nearly exact results. The posterior method with a Truncated Normal distribution and the Laplace
method are not as accurate but still result in designs with large EIG. Note that the EIG has been
scaled for interpretability and that all four figures use a common scale. The errors of these estimators
are examined more closely in Figure 10.

We examine experimental design for the simple continuous time process considered in [9] and [18],
arising in epidemiology. Consider a population with fixed size N that is initially healthy at time
t = 0, with individuals becoming infected at a constant rate b as time evolves. We consider a design
space d = (t1, t2), where 0 ≤ t1 ≤ t2, corresponding to the times at which we measure the number
of infected individuals. We place a log-normal prior on the infection rate b.

For this example, we investigate how the choice of variational family affects the asymptotic bias. In
Fig. 9 we compare the EIG surfaces obtained using four estimators: i) an exact method that uses
brute force quadrature; ii) µ̂post with a log-normal variational distribution; iii) µ̂post with a truncated
normal variational distribution; and iv) the Laplace approximation µ̂laplace. The log-normal family
matches the true posterior best, giving mean absolute errors ∼ 10−3. The second posterior method
and the Laplace approximation both make the same distributional assumption, but Laplace results
in absolute errors that are about 30% higher than for the posterior method. See Fig. 10 for a closer
analysis of the errors of the approximate methods.
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Figure 10: Absolute EIG errors corresponding to the estimates depicted in Fig. 9. The optimal design
(t∗1, t

∗
2) determined by an exact method is indicated with a star. The absolute error of the LogNormal

Posterior estimate is ∼ 10−3 across the design space. The mean absolute error of the Laplace EIG
estimates across the design space is about 30% higher than for the Posterior method with a Truncated
Normal variational distribution. In this case the Laplace method results in an upper bound, while (as
always) both Posterior methods yield a lower bound. All three figures have the same scale as Fig. 9,
except for the LogNormal errors, which have been scaled by an additional factor of 100.

Experimental details The likelihood for observing (I1, I2) infected individuals from a population
of size N at times (t1, t2) is given by [12]:

p(I1, I2|b, t1, t2) =
N !

I1!(I2 − I1)!(N − I2)!

[
1− e−bt1

]I1 ×
[
1− e−b(t2−t1)

]I2−I1 [
e−bt1

]I2−I1 [
e−bt2

]N−I2 (139)

The prior over the infection rate b > 0 is taken to be

log b ∼ N(µb, σb) (140)

so that the joint density is given by

p(I1, I2, b|t1, t2) = p(I1, I2|b, t1, t2)p(b) (141)

In our experiment we choose N = 10, µb = 0, and σb = 0.25. The figures are scaled such that
the maximum EIG over the design space (as computed with the exact method) is 1.0. For all four
EIG estimation methods we use quadrature and exact summation over the outcomes (I1, I2) where
appropriate to obtain maximally accurate results. That is, the obtained results are only constrained by
the methods themselves and not the computational budget used. Note that we do not make use of any
kind of amortization.

F Consistent EIG estimation with control variates

In this section, we show that an approximation to the marginal density qm(y|d) can be used a
control variate. Control variates are a means to reduce the variance of Monte Carlo estimators by
using expectations which can be computed analytically. Here, we assume that, for every θ, the KL
divergence KL ( p(y|θ, d) || qm(y|d) ) can be computed analytically. For example, this would be the
case if both p(y|θ, d) and qm(y|d) were Gaussian.

We begin by writing the EIG as

EIG(d) = Ep(y,θ|d)

[
log

p(y|θ, d)

p(y|d)

]
(142)

= Ep(y,θ|d)

[
log

p(y|θ, d)

qm(y|d)

]
+ Ep(y,θ|d)

[
log

qm(y|d)

p(y|d)

]
(143)

= Ep(θ) [KL ( p(y|θ, d) || qm(y|d) )]− KL ( p(y|d) || qm(y|d) ) . (144)

We can now use our assumption on the first term,

Ep(θ) [KL ( p(y|θ, d) || qm(y|d) )]→ Ep(θ) [analytic function of θ] (145)
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Figure 11: (a) Normal variational distributions found by fitting to a target posterior that is a mixture
with two distinct Normal components. In both plots, the target posterior is a mixture of N(µ1, 0.5

2)
andN(µ2, 1.0

2) and we vary ∆µpost = µ1−µ2. In the top plot, the gap between the two components
is ∆µpost = 3.0, while in the bottom plot ∆µpost = 3.3. In contrast to the behaviour resulting from
forward KL minimization, the mode-seeking behaviour of reverse KL minimization leads to a large
change in the corresponding optimal variational distribution from top to bottom. (b) We plot the
partial KL as we vary ∆µpost for the target posterior described in (a). The partial KL as estimated
by reverse KL minimization exhibits a sharp discontinuity as the gap between the two components
crosses ∆µpost ≈ 3.18.

and this expectation can be computed efficiently with conventional Monte Carlo. For the second term,
we use Nested Monte Carlo

KL ( p(y|d) || qm(y|d) ) ≈ 1

N

N∑

n=1

log
1
M

∑M
m=1 p(yn|θm, d)

qm(yn|d)
(146)

where yn
i.i.d.∼ p(y|d) and θm

i.i.d.∼ p(θ). The key benefit of this approach is that this esti-
mator may have lower variance than a direct NMC estimator of EIG(d). Indeed, if we let
A = log

(
1
M

∑M
m=1(y|θm, d)

)
and B = log qm(y|d) then the variance of the estimator in (146) is

Var(A−B) = Var(A) + Var(B)− 2 Cov(A,B) (147)

so the variance will be low when Cov(A,B) is large. We can expect this to happen when qm(y|d) is
a good approximation to the true marginal density p(y|d).

Finally, note that just like µ̂VNMC, this estimator is consistent, i.e. it will converge to the EIG as
N,M →∞.

G KL ( q || p ) versus KL ( p || q )

In Appendix A.1, we showed that our posterior estimator is implicitly minimizing the following
expected KL divergence

EIG(d)− Lpost(d) = Ep(y|d) [KL ( p(θ|y, d) || qp(θ|y, d) )] . (148)

In variational inference, the inner KL divergence is referred to as the forward KL. In this section, we
compare our approach with a similar approach which also uses a posterior approximation, but instead
minimize the reverse KL divergence, KL ( qp(θ|y, d) || p(θ|y, d) ).

Specifically, we explore how the reverse KL divergence exhibits discontinuous behaviour that could
be problematic in the context of EIG estimation. We begin by writing the posterior estimator as

Lpost(d) = Ep(y|d)

[
Ep(θ|y)[log qp(θ|y, d)]

]
+H[p(θ)]. (149)

The term involving qp is the expectation of the partial KL, Ep(θ|y) [log qp(θ|y, d)]. We will show that
reverse KL minimization can lead to a discontinuity in the partial KL.
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We consider two possible methods for choosing qp. We know from (148) that the optimal choice of
qp within a variational family Q is

qforward(θ|y, d) , arg min
q∈Q

KL ( p(θ|y, d) || q(θ) ) . (150)

An alternative choice is

qreverse(θ|y, d) , arg min
q∈Q

KL ( q(θ) || p(θ|y, d) ) (151)

which is the form usually seen in variational inference. The posterior method outlined in Section 3
attempts to learn qforward for each y by maximizing the bound Lpost. In this appendix, we show that
the alternative qreverse, as well as resulting in less accurate EIG estimates in light of (148), can lead
to discontinuities in the partial KL.

Minimizing the reverse KL can result in the well-known behaviour of mode-locking—and thus
mode-dropping—which in our context can result in significant misestimates of the EIG. Furthermore,
since this mode-locking behaviour is discontinuous (so that it can occur for a particular design d
but not for a neighbouring design d′) it can potentially result in large design-dependent bias in EIG
estimation. For a quantitative exploration of this phenomenon for two bimodal posteriors and a
Normal family of variational distributions Q see Figure 11.
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Abstract

We introduce a fully stochastic gradient based
approach to Bayesian optimal experimental
design (BOED). Our approach utilizes varia-
tional lower bounds on the expected informa-
tion gain (EIG) of an experiment that can be
simultaneously optimized with respect to both
the variational and design parameters. This
allows the design process to be carried out
through a single unified stochastic gradient
ascent procedure, in contrast to existing ap-
proaches that typically construct a pointwise
EIG estimator, before passing this estimator
to a separate optimizer. We provide a number
of different variational objectives including the
novel adaptive contrastive estimation (ACE)
bound. Finally, we show that our gradient-
based approaches are able to provide effective
design optimization in substantially higher di-
mensional settings than existing approaches.

1 INTRODUCTION

The design of experiments is a key problem in almost
every scientific discipline. Namely, one wishes to con-
struct an experiment that is most informative about
the investigated process, while minimizing its cost. For
example, in a psychological trial, we want to ensure
questions posed to participants are pertinent and do
not have predictable responses. In a pharmaceutical
trial, we want to minimize the number of participants
needed to test our hypotheses. In an online automated

Proceedings of the 23rdInternational Conference on Artificial
Intelligence and Statistics (AISTATS) 2020, Palermo, Italy.
PMLR: Volume 108. Copyright 2020 by the author(s).

help system, we want to ensure we ask questions that
identify the user’s problem as quickly as possible.

In all these scenarios, our ultimate high-level aim is
to choose designs that maximize the information gath-
ered by the experiment. A powerful and broadly used
approach for formalizing this aim is Bayesian optimal
experimental design (BOED) (Chaloner and Verdinelli,
1995; Lindley, 1956; Myung et al., 2013). In BOED, we
specify a Bayesian model for the experiment and then
choose the design that maximizes the expected infor-
mation gain (EIG) from running it. More specifically,
let θ denote the latent variables we wish to learn about
from running the experiment and let ξ ∈ Ξ represent
the experimental design. By introducing a prior p(θ)
and a predictive distribution p(y|θ, ξ) for experiment
outcomes y, we can calculate the EIG under this model
by taking the expected reduction in posterior entropy

I(ξ) , Ep(y|ξ) [H[p(θ)]−H[p(θ|y, ξ)]] , (1)

where H[·] represents the entropy of a distribution
and p(θ|y, ξ) ∝ p(θ)p(y|θ, ξ). Our experimental design
process now becomes that of the finding the design ξ∗
that maximizes I(ξ).

Unfortunately, finding ξ∗ is typically a very challenging
problem in practice. Even evaluating I(ξ) for a single
design is computationally difficult because it represents
a nested expectation and thus has no direct Monte
Carlo estimator (Rainforth et al., 2018; Zheng et al.,
2018). Though a large variety of approaches for per-
forming this estimation have been suggested (Myung
et al., 2013; Watson, 2017; Kleinegesse and Gutmann,
2018; Foster et al., 2019), the resulting BOED strate-
gies share a critical common feature: they estimate
I(ξ) on a point-by-point basis and feed this estimator
to an outer-level optimizer that selects the design.

This framework can be highly inefficient for a number
of reasons. For example, it adds an extra level of nest-
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ing to the overall computation process: I(ξ) must be
separately estimated for each ξ, substantially increasing
the overall computational cost. Furthermore, one must
typically resort to gradient-free methods to carry out
the resulting optimization, which means it is difficult
to scale the overall BOED process to high dimensional
design settings due to a dearth of optimization schemes
which remain effective in such settings.

To alleviate these inefficiencies and open the door to
applying BOED in high-dimensional settings, we in-
troduce an alternative to this two-stage framework
by introducing unified objectives that can be directly
maximized to simultaneously estimate I(ξ) and opti-
mize ξ. Specifically, by building on the work of Foster
et al. (2019), we construct variational lower bounds
to I(ξ) that can be simultaneously optimized with
respect to both the variational and design parame-
ters. Optimizing the former ensures that we achieve
a tight bound that in turn gives accurate estimates
of I(ξ), while simultaneously optimizing the latter cir-
cumvents the need for an expensive outer optimization
process. Critically, this approach allows the optimiza-
tion to be performed using stochastic gradient ascent
(SGA) (Robbins and Monro, 1951) and therefore scaled
to substantially higher dimensional design problems
than existing approaches.

To account for the varying needs of different problem
settings, we introduce several classes of suitable varia-
tional lower bounds. Most notably, we introduce the
adaptive contrastive estimation (ACE) bound: an EIG
variational lower bound that can be made arbitrarily
tight, while remaining amenable to simultaneous SGA
on both the variational parameters and designs.

We demonstrate1 the applicability of our unified gradi-
ent approach using a wide range of experimental design
problems, including a real-world high-dimensional ex-
ample from the pharmacology literature (Lyu et al.,
2019). We find that our approaches are able to effec-
tively optimize the EIG, consistently outperforming
baseline two-stage approaches, with particularly large
gains achieved for high-dimensional problems. These
gains lead, in turn, to improved designs and more in-
formative experiments.

2 BACKGROUND

2.1 Bayesian optimal experimental design

When experimentation is costly, time consuming, or
dangerous, it is essential to design experiments to learn
the most from them. To choose between potential
designs, we require a metric of the quality of a candidate

1Supporting code is provided at https://github.com/
ae-foster/pyro/tree/sgboed-reproduce.

design. In the BOED framework dating back to Lindley
(1956), this metric represents how much more certain
we will become in our knowledge of the world after
doing the experiment and analyzing the data. We
prefer designs that will lead to strong conclusions even
if we are not yet sure what those conclusions will be.

Specifically, we consider an experiment with design
ξ, latent variable θ and outcome y. For example, ξ
may represent the question posed to a participant in a
psychology trial, y their answer, and θ their underlying
psychological characteristic which is being studied. The
BOED framework begins with a Bayesian model of the
experimental process. This model consists of a likeli-
hood p(y|θ, ξ) that predicts the experimental outcome
under design ξ and latent variable θ and a prior p(θ)
which incorporates initial beliefs about the unknown θ.
After conducting the experiment, our beliefs about θ
are updated to the posterior p(θ|y, ξ). The information
gained about θ from doing the experiment with design
ξ and obtaining outcome y is the reduction in entropy
from the prior to the posterior

IG(y, ξ) = H[p(θ)]−H[p(θ|y, ξ)]. (2)

As it stands, information gain cannot be evaluated
until after the experiment. To define a metric that will
let us choose between designs before experimentation,
we can use the expected information gain (EIG), I(ξ),
by taking the expectation of IG over hypothesized
outcomes y using the marginal distribution under our
model, p(y|ξ), to give

I(ξ) , Ep(y|ξ) [H[p(θ)]−H[p(θ|y, ξ)]] (3)

which can be rewritten in the form of a mutual infor-
mation between θ and y with ξ fixed, namely

I(ξ) = MIξ(θ; y) = Ep(θ)p(y|θ,ξ)
[
log p(y|θ, ξ)

p(y|ξ)

]
. (4)

The Bayesian optimal design, ξ∗, is now the one which
maximizes EIG over the set of feasible designs Ξ

ξ∗ = arg max
ξ∈Ξ

I(ξ). (5)

In iterated experimental design, we design a sequence
ξ1, ..., ξT of experiments. At time t, the prior p(θ)
in (4) is replaced by the posterior given the previous
experiment designs and observed outcomes, namely

p(θ|ξ1:t−1, y1:t−1) ∝ p(θ)
t−1∏

τ=1
p(yτ |θ, ξτ ). (6)

This now allows us to construct adaptive experiments,
wherein we use information gathered from previous
iterations to select the designs used at future iterations.

96



Adam Foster, Martin Jankowiak, Matthew O’Meara, Yee Whye Teh, Tom Rainforth

2.2 Estimating expected information gain

Making even a single point estimate of EIG when solv-
ing (5) can be challenging because we must first esti-
mate the unknown p(y|ξ) or p(θ|y, ξ), and then take
an expectation over p(θ)p(y|θ, ξ). Nested Monte Carlo
(NMC) estimators (Rainforth et al., 2018), which make
a Monte Carlo approximation of both the inner and
outer integrals, converge relatively slowly: at a rate
O(T−1/3) in the total computational budget T .

Foster et al. (2019) noted that this approach is inef-
ficient because it makes a separate Monte Carlo ap-
proximation of the integrand for every sample of the
outer integral. To share information between different
samples, they proposed a number of variational esti-
mators that used amortization, i.e. they attempted to
learn the functional form of the integrand rather than
approximating it afresh each time. One of their ap-
proaches was based on amortized variational inference
and required an inference network qφ(θ|y) which takes
as input φ, y and outputs a distribution over θ. For
any qφ(θ|y), we can construct a lower bound on I(ξ).
This is the Barber-Agakov (BA), or posterior, lower
bound (Barber and Agakov, 2003)

IBA(ξ, φ) , Ep(θ)p(y|θ,ξ)[log qφ(θ|y)] +H[p(θ)] , (7)

which was also used by (Pacheco and Fisher, 2019)
and which has found use representation learning (Poole
et al., 2019) and maximizing information transmission
over noisy channels (Barber and Agakov, 2003).

To make high-quality approximations to I(ξ), and si-
multaneously learn a good posterior approximation,
Foster et al. (2019) maximize this bound with respect
to φ. This approach is most effective when the bound
is tight, i.e. maxφ IBA(ξ, φ) = I(ξ). For IBA(ξ, φ), this
occurs when it is possible to have qφ(θ|y) = p(y|θ, ξ),
i.e. when the inference network is powerful enough to
find the true posterior distribution for every y.

To obtain high-quality approximations of I(ξ) even
when the inference network cannot capture the true
posterior, Foster et al. (2019) also considered another
variational estimator: variational nested Monte Carlo
(VNMC). This uses the inference network qφ(θ|y) in
conjunction with additional samples to improve the
estimate of the integrand. They showed that this leads
to the following upper bound on I(ξ)

IV NMC(ξ, φ, L) , E


log p(y|θ0, ξ)

1
L

∑L
`=1

p(θ`)p(y|θ`,ξ)
qφ(θ`|y)


 , (8)

where the expectation is over p(θ0)p(y|θ0, ξ)qφ(θ1:L|y).
The inference network in VNMC is trained by minimiza-
tion, in the same way IBA is trained by maximization.

IV NMC has the attractive feature that the bound be-
comes tight as L→∞, even if qφ(θ`|y) is not powerful
enough to directly represent the true posterior.

2.3 Optimizing the EIG

The experimental design problem is to find the design
that maximizes the EIG. Therefore, as well as finding a
way to estimate EIG, existing approaches subsequently
need to find a way of searching across Ξ to find promis-
ing designs. At a high-level, most existing approaches
propose a two-stage procedure in which noisy estimates
of I(ξ) are made, and a separate optimization proce-
dure selects the candidate design ξ to evaluate next.

Kleinegesse and Gutmann (2018) and Foster et al.
(2019) both use Bayesian optimization (BO) for this
outer optimization step, a black-box optimization
method that is tolerant to noise in the estimates of
the objective function (Snoek et al., 2012), in this case
I(ξ). Some approaches (Watson, 2017; Lyu et al., 2019)
instead select a finite number of candidate designs in Ξ
and estimate I(ξ) at each candidate, with some refining
this process further by adaptively allocating computa-
tional resources between these designs (Vincent and
Rainforth, 2017; Rainforth, 2017). Another suggested
approach is to use MCMC methods to carry out this
outer optimization (Amzal et al., 2006; Müller, 2005).

3 GRADIENT-BASED BOED

Our central proposal is to replace the two-stage pro-
cedure outlined above with a single stage that simul-
taneously estimates I(ξ) and optimizes ξ. This has
the critical advantage of allowing SGA to be directly
applied to the design optimization. Not only does
this provide substantial computational gains over ap-
proaches which must construct separate estimates for
each design considered, but it also provides the poten-
tial to scale to substantially higher dimensional design
problems than those which can be effectively tackled
with existing approaches. Since we take gradients with
respect to ξ, we henceforth assume that Ξ is continuous.

In our approach, we utilize variational lower bounds on
I. Specifically, suppose we have a bound L(ξ, φ) ≤ I(ξ)
with variational parameters φ. For fixed ξ, the estimate
of I(ξ) improves as we maximize with respect to φ. We
propose to maximize L jointly with respect to (ξ, φ). As
we train φ, the variational approximation improves; as
we train ξ our design moves to regions where the lower
bound on EIG is largest. By tackling this as a single
optimization problem over (ξ, φ), we obviate the need
to have an outer optimizer for ξ. Using a lower bound
is important because it allows us to perform a single
maximization over (ξ, φ), rather than a more complex
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optimization such as the max-min optimization that
would result if we used an upper bound.

In practice, we do not have lower bounds on I that we
can evaluate and differentiate in closed form. Instead,
we have bounds that are expectations over p(θ)p(y|θ, ξ).
Fortunately, we can still maximize these lower bounds
with respect to (ξ, φ) by using SGA, which is known
to remain effective in high dimensions (Bottou, 2010).

3.1 Barber-Agakov (BA)

We now make our first concrete proposal for the lower
bound L(ξ, φ): the BA bound IBA, as defined in (7).
The difference is we will now optimize (ξ, φ) jointly
whereas previously only φ was trained using gradients.
To perform SGA, we use the following unbiased esti-
mators for ∂IBA/∂φ and ∂IBA/∂ξ

∂̂IBA
∂φ

= 1
N

N∑

n=1

∂

∂φ
log qφ(θn|yn), (9)

∂̂IBA
∂ξ

= 1
N

N∑

n=1
log qφ(θn|yn) ∂

∂ξ
log p(yn|θn, ξ) (10)

where θn, yn
i.i.d.∼ p(θ)p(y|θ, ξ). The estimator of

∂IBA/∂ξ is a score function estimator, other possi-
bilities are discussed in Section 3.6.

3.2 Adaptive contrastive estimation (ACE)

The BA bound provides one specific case of our one-
stage procedure for optimal experimental design. We
now introduce a new lower bound that improves upon
IBA. The potential issue with the BA bound is that it
may not be sufficiently tight, which happens when the
inference network cannot represent the true posterior.
One possible solution is to introduce additional samples,
as in the VNMC estimator (8). However, we cannot
use VNMC directly for a one-stage procedure: since it
is an upper bound, we must minimize it with respect
to φ, but we still wish to maximize with respect to ξ.

Looking more closely at the VNMC bound, we see that
its main failure case is when the denominator strongly
under-estimates p(y|ξ), which can happen when all the
inner samples θ1, ..., θL miss regions where the joint
p(θ`)p(y|θ`, ξ) is large. In addition to the samples θ1:L,
we also have the original sample θ0 from which y was
sampled. One way to avoid the under-estimation in the
denominator would be to include this sample, giving

IACE(ξ, φ, L) = E


log p(y|θ0, ξ)

1
L+1

∑L
`=0

p(θ`)p(y|θ`,ξ)
qφ(θ`|y)


 (11)

where the expectation is with respect to
p(θ0)p(y|θ0, ξ)q(θ1:L|y). In fact, by including θ0

we cause the denominator to now over-estimate p(y|ξ)
which results in a new lower bound on I(ξ) which
can be jointly maximized with respect to (ξ, φ). The
samples θ1:L can now be seen as contrasts to the
original sample θ0. For this reason, we call θ1:L
contrastive samples and we call (11) the adaptive
contrastive estimate (ACE) of EIG. The following
theorem establishes that IACE is a valid lower bound
on the EIG which becomes tight as L→∞.
Theorem 1. For any model p(θ)p(y|θ, ξ) and inference
network qφ(θ|y), we have the following:

1. IACE is a lower bound on I(ξ) and we can charac-
terize the error term as an expected KL divergence:

I(ξ)− IACE(ξ, φ, L)

= Ep(y|ξ)

[
KL

(
P (θ0:L|y)

∣∣∣∣∣

∣∣∣∣∣
∏

`

qφ(θ`|y)
)]
≥ 0,

P (θ0:L|y) = 1
L+ 1

L∑

`=0
p(θ`|y, ξ)

∏

k 6=`
qφ(θk|y).

2. As L→∞, we recover the true EIG:
limL→∞ IACE(ξ, φ, L) = I(ξ).

3. The ACE bound is monotonically increasing in L:
IACE(ξ, φ, L2) ≥ IACE(ξ, φ, L1) for L2 ≥ L1 ≥ 0.

4. If the inference network equals the true posterior
qφ(θ|y) = p(θ|y, ξ), then IACE(ξ, φ, L) = I(ξ),∀L.

See Appendix A for the proof and additional results.
Gradient estimation for ACE is discussed in Section 3.6.
We note that, to the best of our knowledge, IACE has
not previously appeared in the BOED literature.2

3.3 Prior contrastive estimation (PCE)

Theorem 1 tells us that IACE can become close to I(ξ)
if either: 1) the inference network becomes close to the
true posterior p(θ|y, ξ), 2) we increase the number of
contrastive samples L. The BA bound only becomes
tight in case 1). A special case of ACE is to replace the
inference network qφ(θ|y) with a fixed distribution and
rely on the contrastive samples to make good estimates
of I(ξ), only becoming tight in case 2), i.e. as L→∞.
This simplification can speed up training, since we no
longer need to learn additional parameters φ.

To explore this, we propose the prior contrastive
estimation (PCE) bound, in which the prior p(θ) is
used to generate contrastive samples:

IPCE(ξ, L) , E

[
log p(y|θ0, ξ)

1
L+1

∑L
`=0 p(y|θ`, ξ)

]
, (12)

2Aside from a recent blog post (Sobolev, 2019) we believe
this bound has not previously been suggested in any context.
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where the expectation is over p(θ0)p(y|θ0, ξ)p(θ1:L).
Whilst inherently less powerful than ACE, PCE can be
effective when the prior and posterior are similar, such
that p(θ) is a suitable proposal to estimate p(y|ξ).
Though, to the best of our knowledge, this bound
has not been applied to BOED before, we note that it
shares a connection to the information noise contrastive
estimation (InfoNCE) bound on mutual information
used in representation learning (van den Oord et al.,
2018). Given K data samples xk, corresponding repre-
sentations zk, and a critic fψ(x, z) ≥ 0, we have

MI(x; z) ≥ E

[
1
K

K∑

k=1
log fψ(xk, zk)

1
K

∑K
`=1 fψ(x`, zk)

]
(13)

where the expectation is over p(x)p(z|x), p(x) is the
data distribution, and p(z|x) is the encoder. Poole
et al. (2019) showed that the encoder density p(z|x) is
the optimal critic, although it is rarely known in closed
form in the representation learning context. Writing θ
for x and y for z, we note the mathematical connection
between this optimal case and IPCE .

3.4 Likelihood-free ACE

In some models such as random effects models, the
likelihood p(y|θ, ξ) is not known in closed form but
can be sampled from. This presents a problem when
computing IACE or its derivatives because the likeli-
hood appears in (11). To allow ACE to be used for
these kinds of models, we now show that using a un-
normalized approximation to the likelihood still results
in a valid lower bound on the EIG. In fact, if using a
parametrized likelihood approximation fψ, it is then
possible to train ψ jointly with (ξ, φ) to approximate
the likelihood, learn an inference network, and find the
optimal design through the solution to a single opti-
mization problem. The following theorem, whose proof
is presented in Appendix A, shows that replacing the
likelihood with an unnormalized approximation does
result in a valid lower bound on EIG.
Theorem 2. Consider a model p(θ)p(y|θ, ξ) and in-
ference network qφ(θ|y). Let fψ(θ, y) ≥ 0 be an unnor-
malized likelihood approximation. Then,

I(ξ) ≥ E


log fψ(θ0, y)

1
L+1

∑L
`=0

p(θ`)fψ(θ`,y)
qφ(θ`|y)


 (14)

where the expectation is over p(θ0)p(y|θ0, ξ)qφ(θ1:L|y).

3.5 Iterated experimental design with ACE

In iterated experimental design, we replace p(θ)
by p(θ|y1:t−1, ξ1:t−1) as per (6). We can sample

p(θ|y1:t−1, ξ1:t−1) by performing inference. Whilst vari-
ational inference also provides a closed form estimate
of the posterior density, some other inference methods
do not. This is problematic because the prior density
appears in (11). Fortunately, it is sufficient to know
the density up to proportionality (Foster et al., 2019).
Indeed if p(θ) = A · γ(θ) where A does not depend on
(ξ, φ, y) and γ is an unnormalized density, then

I(ξ) ≥ E


log p(y|θ0, ξ)

1
L+1

∑L
`=0

γ(θ`)p(y|θ`,ξ)
qφ(θ`|y)


− logA (15)

and the derivatives of logA are simply zero.

3.6 Gradient estimation for ACE

To optimize the ACE bound with respect to (ξ, φ) we
need unbiased gradient estimators of ∂IACE/∂ξ and
∂IACE/∂φ. The simplest form of the ξ-gradient is

∂IACE
∂ξ

= E
[
∂g

∂ξ
+ g · ∂

∂ξ
log p(y|θ0, ξ)

]
(16)

where the expectation is with respect to
p(θ0)p(y|θ, ξ)q(θ1:L|y), and

g(y, θ0:L, φ, ξ) = log p(y|θ0, ξ)
1

L+1
∑L
`=0

p(θ`)p(y|θ`,ξ)
qφ(θ`|y)

. (17)

Estimating the expectation (16) directly using Monte
Carlo gives the score function, or REINFORCE, esti-
mator. Unfortunately, this is often high variance, and
reducing gradient estimator variance is often important
in solving challenging experimental design problems.

One variance reduction method is reparameterization.
For this, we introduce random variables ε, ε′1:L which
do not depend on (ξ, φ) along with representations of
y and θ as deterministic functions of these variables:
y = y(θ0, ξ, ε) and θ` = θ(y, φ, ε′`). This now permits
the reparameterized gradient

∂IACE
∂ξ

= E

[
∂g

∂ξ
+ ∂g

∂y

∂y

∂ξ
+

L∑

`=1

∂g

∂θ`

∂θ`
∂y

∂y

∂ξ

]
(18)

where the expectation is over p(θ0)p(ε)p(ε′1:L). A Monte
Carlo approximation of this expectation is typically a
much lower variance estimator for the true ξ-gradient.

Alternatively, if y is a discrete random variable we
can sum over the possible values Y. This approach is
known as Rao-Blackwellization and gives

∂IACE
∂ξ

=
∑

y∈Y
E
[
∂g

∂ξ
p(y|θ0, ξ) + g

∂

∂ξ
p(y|θ0, ξ)

]
(19)

where the expectation is now over p(θ0)
∏L
`=1 qφ(θ`|y).
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Figure 1: A sample trajectory for the death process. The
grayscale shows the EIG surface (white is maximal), whilst
crosses show the optimization trajectory of ξ using ACE
with pink representing later steps. See Sec. 4.2 for details.

Turning to ∂IACE/∂φ, we note that if θ1:L are repa-
rameterizable (i.e. can be expressed θ` = θ(y, φ, ε′`)),
then we can utilize the double reparameterization of
Tucker et al. (2018); for full details see Appendix A.1.

4 EXPERIMENTS

We now learn optimal experimental designs in five
scenarios: the death process, a well known two-
dimensional design problem from epidemiology; a non-
conjugate regression model with a 400-dimensional
design; an ablation study in the setting of adver-
tising; a real-world biomolecular docking problem
from pharmacology in 100 dimensions; and a constant
elasticity of substitution iterated design problem in
behavioural economics with 6 dimensional designs.

4.1 Evaluating experimental designs

We first discuss which metrics we will use to judge the
quality of the designs we obtain. Our primary metric
on designs is, of course, the EIG. We prefer designs with
high EIGs. In some cases, we can evaluate the EIG
analytically. In other cases, we can use a sufficiently
large number of samples in a NMC (Rainforth et al.,
2018) estimator to be sure that we have estimates that
are sufficiently accurate to compare designs.

To explore the limits of our methods, we will also
consider scenarios where neither of these approaches is
suitable. In these cases, we pair the ACE lower bound
(with ξ fixed for evaluation) with the VNMC upper
bound (Foster et al., 2019) to trap the true EIG value—
if the lower bound of one design is higher than the
upper bound for another, we can be sure that the first
design is superior (noting that the bounds themselves
can be tractably estimated to a very high accuracy).

In some settings, when we know the true optimal design
ξ∗, we will also consider the design error ‖ξ∗ − ξ‖, i.e.
how close our design is to the optimal design.

In iterated experiment design, as well as designing ex-

Figure 2: Optimization of EIG for the death process as a
function of wall clock time. We depict the mean and ±1
standard error (s.e.) from 100 runs. The final EIG values
(rightmost points) are as follows: [ACE] 0.9830 ± 0.0001,
[PCE] 0.9822 ± 0.0001, [BA] 0.9822 ± 0.0002, [BO] 0.9732 ±
0.0009. See Sec. 4.2 for details.

periments, we must also perform inference on the latent
variable θ after each iteration. Here, we also investi-
gate the quality of the final posterior. Specifically, if
p(θ|y1:t, ξ1:t) is the posterior after t experiments, we
use the posterior entropy, and the posterior RMSE
Eθ∼p(θ|y1:t,ξ1:t)

[
(θ − θ∗)2]1/2. We prefer low entropies

and low RMSE values.

4.2 Death process

We consider an example from epidemiology, the death
process (Cook et al., 2008; Kleinegesse and Gutmann,
2018), in which a population of N = 10 individuals
transitions from healthy to infected states at a constant
but unknown rate θ. We can measure the number of
infected individuals at two different times ξ1 and ξ1 +ξ2
where ξ1, ξ2 ≥ 0. Our aim is to infer the infection rate
θ from these observations. For full details of the prior
and likelihood used, see Appendix B.2.

On this problem, we apply gradient methods with
Rao-Blackwellization over the 66 possible outcomes.
Figure 1 shows a sample optimization trajectory with
the approximate EIG surface. We compare against
BO using the Rao-Blackwellized NMC estimator of
Vincent and Rainforth (2017). Figure 2 shows that, for
the allowed time budget, all gradient methods perform
better than BO even on this two-dimensional problem.

4.3 Regression

We now compare our one-stage gradient approaches
to experimental design against a two-stage baseline
on a high-dimensional design problem. We choose a
general purpose Bayesian linear regression model with
n observations and p features. The design ξ is an n× p
matrix; the latent variables are θ = (w, σ), where w is
the p dimensional regression coefficient and σ2 is the
scalar variance. The n outcomes are generated using
a Normal likelihood yi ∼ N(ξi · w, σ) for i = 1, ..., n.
Here ξi is the ith row of ξ. To avoid trivial solutions,
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Table 1: Regression results. We estimate lower and upper
bounds on the final EIG and present the mean and ±1 s.e.
from 10 runs. See Sec. 4.3 for details.

Method EIG l.b. EIG u.b.
ACE 16.1 ± 0.1 20.7 ± 0.2
PCE 16.6 ± 0.1 21.5 ± 0.2
BA 16.4 ± 0.2 21.1 ± 0.2
BO + VNMC 7.3 ± 0.1 9.6 ± 0.1
Random Search + VNMC 7.1 ± 0.1 9.4 ± 0.1

we enforce the constraint ‖ξi‖1 = 1 for all i. We use
independent priors wj ∼ Laplace(1) for j = 1, ..., p and
σ ∼ Exp(1). See Appendix B.3 for complete details.

We set n = p = 20 and applied five methods to this
400 dimensional design problem: BA, ACE and PCE,
as well as the VNMC estimator of Foster et al. (2019),
with both BO and random search to optimize over Ξ.
The results are presented in Table 1. We note that the
gradient methods strongly outperform the gradient-free
baselines, with about double the final EIG.

4.4 Advertising

We now conduct a detailed ablation study on the effects
of dimension on the quality of experimental designs
produced using our gradient approaches and BO. To
further isolate the distinction between one-stage and
two-stage approaches to BOED, we choose a setting
in which we can compute I(ξ) analytically. We give
BO, but not the gradient methods, access to a EIG
oracle when making point evaluations of I(ξ), i.e. our
two-stage baseline is spared the need to estimate I(ξ).
Thus we put BO in the best possible position and
ensure any gains are due to improvements from using
gradient-based optimization.

Suppose that we are given an advertising budget of
B dollars that we need to allocate among D regions,
i.e. we choose ξ ≥ 0 with

∑D
i=1 ξi = B. After con-

ducting an ad campaign, we observe a vector of sales
y. We use this data to make inferences about the un-
derlying market opportunities θ in each region. Our
prior incorporates the knowledge that neighbouring
regions are more correlated than distant ones—this
leads to an interesting experimental design problem
because information can be pooled between regions.
We can also compute the true EIG and optimal design
ξ∗ analytically. For full details, see Appendix B.4.

We compare the performance of four estimation and
optimization methods on this problem, see Fig. 3 for
the results. The three gradient-based methods (ACE,
PCE, BA) perform best, with the BO baseline strug-
gling in dimensions D ≥ 6, even though the latter has
access to an EIG oracle. PCE performed well in low
dimensions, but degraded as the dimension increases

Figure 3: Mean absolute EIG and design errors for the
marketing model in Sec. 4.4 averaged over 10 runs. The EIG
is normalized such that an EIG error of unity corresponds
to doing no better than a uniform budget, i.e. ξi = B/D
for i = 1, ..., D.

and sampling from the prior becomes increasingly inef-
ficient, ACE and BA avoid this by learning adaptive
proposal distributions. We note that since in this case
the family of variational distributions used in ACE
and BA include the true posterior, both methods yield
similar performance.

4.5 Biomolecular docking

We now consider an experimental design problem of in-
terest to the pharmacology community. Having demon-
strated that our one-stage gradient methods compare
favourably with two stage approaches, we now compare
against designs crafted by domain experts.

In molecular docking, computational techniques are
used to predict the binding affinity between a com-
pound and a receptor. When synthesized in the lab,
the two may bind—this is called a hit. Learning a
well-calibrated hit-rate model can guide how many
compounds to evaluate for additional objectives, such
as drug-likeness or toxicity, before experimental testing.
Lyu et al. (2019) modelled the probability of outcome
yi being a hit, given the predicted binding affinity, or
docking score ξi ∈ [−75, 0], as

p(yi = 1|θ, ξ) = bottom + top− bottom
1 + e−(ξi−ee50)×slope (20)

where θ = (top, bottom, ee50, slope) with priors given
in Appendix B.5.

Of 150 million compounds, Lyu et al. (2019) selected a
batch of compounds to experimentally test to best fit
the sigmoid hit-rate model. They considered 6 candi-
date designs and selected one that maximized the EIG
estimated by NMC. Here, we instead apply gradient-
based BOED to search across candidate designs which
consist of 100 docking scores ξ1, ..., ξ100. To evaluate
our final designs, we present upper and lower bounds
on the final EIG: see Table 2. We see that all gradient
methods are able to outperform experts in terms of
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(a) Total Entropy (b) Posterior RMSE of ρ (c) Posterior RMSE of α (d) Posterior RMSE of u

Figure 4: Improvement in the posterior in the sequential CES experiment. Each step took 120 seconds for each method.
We present the mean and ±1 standard error from 10 runs. See Sec. 4.6 for details.

Table 2: Biomolecular docking results showing the mean
and ±1 s.e. from 10 runs. For the expert, we took the best
design of Lyu et al. (2019) appropriately rescaled to consist
of 100 docking scores for comparison.

Method EIG lower bound EIG upper bound
ACE 1.0835 ± 0.0003 1.0852 ± 0.0001
PCE 1.0825 ± 0.0002 1.0839 ± 0.0002
BA 1.0780 ± 0.0003 1.0794 ± 0.0003
Expert 1.0191 1.0227

EIG, and that ACE appears the best of the gradient
methods. Figure 5 shows our designs are qualitatively
different to those produced by experts.

4.6 Constant elasticity of substitution

We finally turn to iterated experimental design in which
we produce designs, generate data and make inference
repeatedly. This problem therefore captures the end-
to-end-process of experimentation and inference.

We consider an experiment in behavioural economics
that was previously also considered by Foster et al.
(2019). In this experiment, a participant is asked to
compare baskets x,x′ of goods. The model assumes
that their response (on a slider) is based on the differ-
ence in utility of the baskets, and the constant elasticity
of substitution (CES) model (Arrow et al., 1961) gov-
erned by latent variables (ρ,α, u) is then used for this
utility. The aim is to learn (ρ,α, u) characterizing
the participant’s utility. In the experiment, there are
20 sequential steps of experimentation with the same
participant. We compare our gradient-based approach
against the most successful approach of Foster et al.
(2019) that approximates the marginal density to form
an upper bound on EIG, and BO to optimize ξ. For
full details, see Appendix B.6.

Figure 4 shows that gradient-based methods are effec-
tive on this problem; both ACE and PCE decrease the
posterior entropy and RMSEs on the latent variables
faster and further than the baseline, whereas BA does

Figure 5: Designs for the biomolecular docking problem
obtained by ACE and by Lyu et al. (2019). Designs consist
of 100 docking scores at which to test compounds.

not do so well. We suggest that the similar performance
of ACE and PCE is due to the smaller changes in the
posterior at middle and late steps, after much data has
been accumulated: when the posterior does not change
much at each step, p(θ|y1:t−1, ξ1:t−1) forms an effective
proposal for estimating p(yt|ξt).

5 CONCLUSIONS
We have introduced a new approach for Bayesian ex-
perimental design that does away with the two stages
of estimating EIG and separately optimizing over Ξ.
We use stochastic gradients to maximize a lower bound
on I(ξ) and so find optimal designs by solving a single
optimization problem. This unification leads to sub-
stantially improved performance, especially on high-
dimensional design problems.

Of the three lower bounds, IBA, IACE and IPCE , we
note that in all five experiments ACE generally did
as well as the better of BA and PCE: we therefore
recommend it as the default choice. BA performed well
when the inference network could closely approximate
the true posterior; PCE performed well when the prior
was an adequate proposal for estimating p(y|ξ) and
does not require the training of variational parameters.
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A GRADIENT-BASED BOED

We begin with the proof of Theorem 1, which we restate
for convenience.
Theorem 1. For any model p(θ)p(y|θ, ξ) and inference
network qφ(θ|y), we have the following:

1. IACE is a lower bound on I(ξ) and we can charac-
terize the error term as an expected KL divergence:

I(ξ)− IACE(ξ, φ, L)

= Ep(y|ξ)

[
KL

(
P (θ0:L|y)

∣∣∣∣∣

∣∣∣∣∣
∏

`

qφ(θ`|y)
)]
≥ 0,

P (θ0:L|y) = 1
L+ 1

L∑

`=0
p(θ`|y, ξ)

∏

k 6=`
qφ(θk|y).

2. As L→∞, we recover the true EIG:
limL→∞ IACE(ξ, φ, L) = I(ξ).

3. The ACE bound is monotonically increasing in L:
IACE(ξ, φ, L2) ≥ IACE(ξ, φ, L1) for L2 ≥ L1 ≥ 0.

4. If the inference network equals the true posterior
qφ(θ|y) = p(θ|y, ξ), then IACE(ξ, φ, L) = I(ξ),∀L.

We add the further technical assumption that
p(θ)p(y|θ, ξ)/qφ(θ|y) is bounded.

Proof. To begin with 1., we have the error term δ =
I(ξ)− IACE(ξ, φ, L) which can be written

δ = E


log

1
L+1

∑L
`=0

p(θ`)p(y|θ`,ξ)
qφ(θ`|y)

p(y|ξ)


 (21)

= E

[
log

1
L+1

∑L
`=0 p(θ`|y)

∏
k 6=` qφ(θk|y)

∏L
`=0 qφ(θ`|y)

]
(22)

= E

[
log P (θ0:`|y)
∏L
`=0 qφ(θ`|y)

]
(23)

where the expectation is over
p(y|ξ)p(θ0|y, ξ)

∏L
`=1 qφ(θ`|y). Note that the in-

tegrand is symmetric under a permutation of the
labels 0, ..., L, so its expectation will be the same over
the distribution p(y|ξ)p(θ`|y, ξ)

∏
k 6=` qφ(θk|y). Since

P (θ0:L) is a mixture of distributions of this form, this
then implies that the expectation will be the same if it
is taken over the distribution p(y|ξ)P (θ0:L), yielding

δ = Ep(y|ξ)P (θ0:L|y)

[
log P (θ0:L|y)
∏L
`=0 qφ(θ`|y)

]
(24)

which is the expected KL divergence required. We
therefore have δ ≥ 0.

For 2., we use that p(θ)p(y|θ, ξ)/qφ(θ|y) is bounded.
The ACE denominator is a consistent estimator of the
marginal likelihood. Indeed,

1
L+ 1

p(θ0)p(y|θ0, ξ)
qφ(θ0|y) → 0 (25)

and

1
L+ 1

L∑

`=1

p(θ`)p(y|θ`, ξ)
qφ(θ`|y) → p(y|ξ) a.s. (26)

as L→∞ by the Strong Law of Large Numbers, since

Eqφ(θ|y)

[
p(θ)p(y|θ, ξ)
qφ(θ|y)

]
= p(y|ξ). (27)

This establishes the a.s. pointwise convergence of
the ACE integrand to log p(y|θ0, ξ)/p(y|ξ). Hence by
Bounded Convergence Theorem,

ÎACE(ξ, φ, L)→ I(ξ) (28)

as L→∞.

To establish 3., we use a similar approach to 1. We let
ε = IACE(ξ, φ, L2)− IACE(ξ, φ, L1). Then

ε = E


log

1
L1+1

∑L1
`=0

p(θ`)p(y|θ`,ξ)
q(θ`|y)

1
L2+1

∑L2
`=0

p(θ`)p(y|θ`,ξ)
q(θ`|y)


 (29)

= E

[
log Q(θ0:L2 |y)

1
L2+1

∑L2
`=0 p(θ`|y)

∏
k 6=` q(θk|y)

]
(30)

where the expectation is over
p(y|ξ)p(θ0|y, ξ)

∏L2
`=1 q(θ`|y) and

Q(θ0:L2 |y) = 1
L1 + 1

L1∑

`=0
p(θ`|y)

L2∏

k 6=`
q(θk|y). (31)

As in 1., the integrand is unchanged if we permute
the labels 0, ..., L1. By this symmetry, the expecta-
tion is the same when taken over the distribution
p(y|ξ)Q(θ0:L2 |y). We therefore recognise ε as the ex-
pectation of a KL divergence. Hence ε ≥ 0 as required.

4. follows by Bayes Theorem, i.e.
p(θ)p(y|θ, ξ)
p(θ|y, ξ) = p(y|ξ). (32)

which completes the proof.

We also present the proof of Theorem 2.
Theorem 2. Consider a model p(θ)p(y|θ, ξ) and in-
ference network qφ(θ|y). Let fψ(θ, y) ≥ 0 be an unnor-
malized likelihood approximation. Then,

I(ξ) ≥ E


log fψ(θ0, y)

1
L+1

∑L
`=0

p(θ`)fψ(θ`,y)
qφ(θ`|y)


 (14)

where the expectation is over p(θ0)p(y|θ0, ξ)qφ(θ1:L|y).
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Proof. Initially, we note that the contrastive samples
θ1, ..., θL do not carry additional information about θ0.
Formally, we consider the mutual information between
θ0 and the random variable (y, θ1, ..., θL). Using the
Chain Rule for mutual information we have

MI(θ0; (y, θ1, ..., θL))
= MI(θ0; y) + MI(θ0; (θ1, ..., θL)|y)

(33)

Now MI(θ0; (θ1, ..., θL)|y) = 0 since θ` (` > 0) are
conditionally independent of θ0 given y. Therefore

MI(θ0; (y, θ1, ..., θL)) = MI(θ0; y) = I(ξ). (34)

We now use the Donsker-Varadhan representation of
mutual information (Donsker and Varadhan, 1975).
Specifically, for random variables A,B with joint dis-
tribution p(a, b) and any measurable function T (a, b)
we have

MI(A;B)

≥ Ep(a,b)[T (a, b)]− logEp(a)p(b)

[
eT (a,b)

]
.

(35)

We now use this representation with a = θ0, b =
(y, θ1, ..., θL) and T (a, b) the integrand

T (θ0, (y, θ1:L)) = log fψ(θ0, y)
1

L+1
∑L
`=0

p(θ`)fψ(θ`,y)
qφ(θ`|y)

. (36)

We compute the second term in (35), Z =
Ep(a)p(b)

[
eT (a,b)].

Z = Ep(θ0)p(y|ξ)qφ(θ1:L|y)


 fψ(θ0, y)

1
L+1

∑L
`=0

p(θ`)fψ(θ`,y)
qφ(θ`|y)




(37)

= Ep(y|ξ)qφ(θ0:L|y)




p(θ0)fψ(θ0,y)
qφ(θ0|y)

1
L+1

∑L
`=0

p(θ`)fψ(θ`,y)
qφ(θ`|y)


 (38)

= Ep(y|ξ)qφ(θ0:L|y)




1
L+1

∑L
`=0

p(θ`)fψ(θ`,y)
qφ(θ`|y)

1
L+1

∑L
`=0

p(θ`)fψ(θ`,y)
qφ(θ`|y)


 (39)

= 1 (40)

where the second to last line follows by symmetry. This
establishes that logZ = 0, and so (14) constitutes a
valid lower bound on I(ξ). That is

I(ξ) ≥ E


log fψ(y, θ0)

1
L+1

∑L
`=0

p(θ)fψ(y,θ`)
qφ(θ`,y)


 (41)

which completes the proof.

The following theorem establishes a condition under
which the maximum of the ACE objective converges
to the maximum of the EIG as L→∞.

Theorem 3. Consider a model p(θ)p(y|θ, ξ) such that

C , sup
ξ∈Ξ

inf
φ∈Φ

Ep(θ)p(y|θ,ξ)
[
p(θ|y, ξ)
qφ(θ|y, ξ)

]
<∞. (42)

and I∗ , supξ∈Ξ I(ξ) <∞. Let qφ(θ|y) be an inference
network and let

IL = sup
ξ∈Ξ,φ∈Φ

IACE(ξ, φ, L). (43)

Then,
0 ≤ I∗ − IL ≤

C − 1
L+ 1 (44)

and in particular IL → I∗ as L→∞.

Proof. We have 0 ≤ I∗ − IL since IACE is a lower
bound on I(ξ) by Theorem 1.

Next, we consider ∆(ξ, φ, L) = I(ξ) − IACE(ξ, φ, L).
We have

∆ = Ep(θ0)p(y|θ0,ξ)qφ(θ1:L|y)

[
log YL

p(y|ξ)

]
(45)

where

YL = 1
L+ 1

L∑

`=0
w` and w` = p(θ`)p(y|θ`, ξ)

qφ(θ`|y) ; (46)

we write (45) as

∆ = E
[
log
(

1 + YL − p(y|ξ)
p(y|ξ)

)]
(47)

and we apply the inequality log(1 + x) ≤ x to give

∆ ≤ E
[
YL − p(y|ξ)
p(y|ξ)

]
. (48)

We now observe that for ` > 0, Eqφ(θ`|y)[w`] = p(y|ξ)
and hence, taking a partial expectation over θ1:L we
have

∆ ≤ Ep(θ0)p(y|θ0,ξ)

[
w0 − p(y|ξ)

(L+ 1)p(y|ξ)

]
(49)

≤ 1
L+ 1

(
Ep(θ0)p(y|θ0,ξ)

[
p(θ0|y, ξ)
qφ(θ0|y)

]
− 1
)

(50)

Hence

I∗ − IL = sup
ξ∈Ξ

I(ξ)− sup
ξ∈Ξ,φ∈Φ

IACE(ξ, φ, L)] (51)

≤ sup
ξ∈Ξ

[I(ξ)− sup
φ∈Φ

IACE(ξ, φ, L)] (52)

≤ sup
ξ∈Ξ

inf
φ∈Φ

[∆(ξ, φ, L)] (53)

≤ C − 1
L+ 1 (54)

as required.
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A.1 Double reparametrization

We have the φ-gradient of the ACE objective

∂IACE
∂φ

= Ep(θ0)p(y|θ0,ξ)

[
−∂L
∂φ

∣∣∣∣
θ0,y

]
(55)

where L is our estimate of the marginal likelihood with
gradient

∂L
∂φ

∣∣∣∣
θ0,y

= ∂

∂φ
Eqφ(θ1:L|y)

[
log
(

L∑

`=0
w`

)∣∣∣∣∣ θ0, y

]
(56)

where

w` = p(θ`)p(y|θ`, ξ)
qφ(θ`|y) . (57)

If qφ(θ|y) is reparameterizable as a function of φ, then
we can apply double reparameterization to this gradient.
Indeed, were it not for the w0 term, this would be
exactly the IWAE of Burda et al. (2015). We exploit
the double reparameterization of Tucker et al. (2018)
with a minor variation to account for w0 to obtain a
low variance gradient estimator.

The doubly reparametrized gradient for ACE takes the
form

∂IACE
∂φ

= Ep(θ0)p(y|θ0,ξ)qφ(θ1:L|y)

[
L∑

`=0
v`

]
(58)

where

v0 = w0∑L
m=0 wm

∂

∂φ
log qφ(θ0|y) (59)

and for ` > 0

v` = −
(

w`∑L
m=0 wm

)2
∂ logw`
∂θ`

∂θ`
∂φ

. (60)

A.2 Alternative gradient

We begin with an observation: the true integrand when
computing the EIG as an expectation over p(θ)p(y|θ, ξ)
is given by

g∗(y, θ, ξ) = log p(y|θ, ξ)
p(y|ξ) . (61)

Recall the score function identity

Ep(x|ξ)
[
∂

∂ξ
log p(x|ξ)

]
= 0. (62)

We have

Ep(θ)p(y|θ,ξ)
[
∂g∗
∂ξ

]
(63)

= Ep(θ)p(y|θ,ξ)
[
∂

∂ξ
log p(y|θ, ξ)

p(y|ξ

]
(64)

= Ep(θ)
(
Ep(y|θ,ξ)

[
∂

∂ξ
p(y|θ, ξ)

])

− Ep(y|ξ)
[
∂

∂ξ
log p(y|ξ)

] (65)

= 0 (66)

by two applications of the score function identity. This
suggests that, as g becomes close to g∗, the ∂g/∂ξ term
in (16) has expectation close to zero, and primarily
contributes variance to the gradient estimator.

Theorem 2 shows that if we remove the ∂g/∂ξ term, the
resulting algorithm still optimizes a valid lower bound
on I(ξ). Specifically, removing this term is equivalent
to the following gradient-coordinate algorithm. First,
we choose the family fψ(θ, y) to be p(y|θ, ψ). Then at
time step t we do the following

1. Set ψt = ξt

2. Take a gradient step with respect to (ξ, φ) to up-
date ξt, φt

Importantly, the new gradient does not include a ∂g/∂ξ
term, but is the gradient of a valid lower bound on
EIG. In practice, this alternative gradient did not yield
substantially different performance from the standard
approach of including the ∂g/∂ξ term. All our experi-
ments used the standard approach for simplicity.

B EXPERIMENTS

B.1 Implementation

All experiments were implemented in PyTorch
1.4.0 (Paszke et al., 2019) and Pyro 0.3.4 (Bing-
ham et al., 2018). Supporting code can be found
at https://github.com/ae-foster/pyro/tree/
sgboed-reproduce, see ‘README.md‘ for details on
how to run the experiments.

B.2 Death process

We place the prior θ ∼ LogNormal(0, 1) on the infection
rate and have the likelihood

I1 ∼ Binomial(N, e−θξ1)
I2 ∼ Binomial(N − I1, e−θξ2).

(67)

We also have the constraint ξ1, ξ2 ≥ 0.
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Table 3: Death process. We present the final EIG for each
method (computed using NMC with 200000 samples).

Method EIG mean ±1 s.e.
ACE 0.9830 ± 0.0001
PCE 0.9822 ± 0.0001
BA 0.9822 ± 0.0002
ACE without RB 0.9789 ± 0.0006
PCE without RB 0.9710 ± 0.0025
BA without RB 0.9322 ± 0.0045
BO with NMC 0.9732 ± 0.0009

For each method, we fixed a computational budget of
120 seconds, and did 100 independent runs. For gra-
dient methods, we used the Adam optimizer (Kingma
and Ba, 2014) with learning rate 10−3 and the default
momentum parameters. The inference network made a
separate Gaussian approximation to the posterior for
each of the 66 outcomes. To evaluate I(ξ) for compar-
ison we used NMC with a large number of samples:
20000 for Figure 2 and 200000 for the final values in
the caption and in Table 3. For the BO, we used a
Matern52 kernel with variance 1 and lengthscale 0.25,
and the GP-UCB1 algorithm (Srinivas et al., 2009) for
acquisition.

We used the following number of samples for our Rao-
Blackwellized estimators

Method Number of samples
ACE 10 + 660
PCE 10
BA 10
NMC 2000

B.3 Regression

We consider the following prior on θ = (w, σ)

wj
i.i.d.∼ Laplace(1) for j = 1, ..., p (68)

σ ∼ Exponential(1) (69)

with the likelihood

yi ∼ N




p∑

j=1
ξijwj , σ


 for i = 1, ...n. (70)

This represents a standard regression model, although
with non-Gaussian prior distributions we cannot com-
pute the posterior or true EIG analytically. To ensure
the EIG has a finite maximum, we impose the following
constraint

∑

j

|ξij | = 1 for i = 1, ..., n. (71)

In practice, we set n = p = 20.

Figure 6: The EIG against time for the death pro-
cess: comparing Rao-Blackwellization against no Rao-
Blackwellization. Each method had a 120 second time
budget.

For each of our five methods, we fixed the computa-
tional budget to 15 minutes and did 10 independent
runs. For gradient methods, we used a learning rate of
10−3 and the Adam optimizer with default momentum
parameters. The inference network used the following
variational family

w ∼ N(µ, sΣ0) (72)
σ ∼ Γ(α, β) (73)

and we used a neural network with the following archi-
tecture

Operation Size Activation
Input → H1 64 ReLU
H1 → H2 64 ReLU
H2 → µ 20 -
H2 → (α, β) 2 Softplus
H2 → s 1 Softplus
Σ0 20× 20 -

For BO and random search, point evaluations of I(ξ)
were made using VNMC. Each VNMC evaluation took
1000 steps, with the optimization as above (but with
ξ fixed). We used a GP with Matern52 kernel with
lengthscale 5, variance 10. We used a GP-UCB1 ac-
quisition rule, and terminated once 15 minutes had
passed. For random search, we sampled designs using
a standard unit Gaussian.

We used the following number of samples

Method Inner samples L Outer samples N
ACE 10 10
PCE 10 10
BA n/a 100
VNMC 10 10

To evaluate designs, we used ACE/VNMC. We first
trained ACE using the same procedure as above, for
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20000 steps. Then we made the final ACE/VNMC
evaluations using the fixed inference network and L =
2.5× 103 inner samples, N = 105 outer samples.

B.4 Advertising

We introduce a LogNormal likelihood and a D-
dimensional latent variable θ governed by a Normal
prior, the joint density of our model is

p(y,θ|ξ) = LN (y|θ � ξ, σ2ξ)N (θ|0,Λ0) (74)

where σ controls the observation noise, Λ0 is a non-
diagonal precision matrix and � denotes the Hadamard
product. Since there are correlations among the D
regions, the optimal advertising budget (w.r.t. gaining
information about θ) allocates more money to the
regions that are tightly correlated.

Throughout we assume that the number of regions D
is even. We set the budget to scale with the number
of dimensions, B = D

2 , set σ = 1 and choose the prior
precision matrix to be

Λ0 = (1 + 1
D )ID − 1

Duu
T uT ≡ (α, ..., α, 1, ..., 1)

where the first D
2 components of u equal α and the

last D
2 components equal 1. We shall see that α = 0.1

controls the degree of asymmetry in the optimal design.
Discarding an irrelevant constant, we can compute the
exact EIG using the formula:

I(ξ) = 1
2 log det Λpost Λpost = Λ0 + 1

σ2 diag(ξ)

Using the matrix determinant lemma for rank-1 matrix
updates we can then compute

log det Λpost =
D∑

i=1
log(1 + 1

D + ξi)+

log


1−

D
2∑

i=1

{
α2

1+ 1
D+ξi

}
−

D∑

i=1+D
2

{
1

1+ 1
D+ξi

}

 .

By symmetry the optimum (it is easy to check that
it is a maximum) of EIG(ξ) will satisfy ξi = ξi+1 for
i = 1, ..., D2 −1, D2 +1, ..., D. In other words ξ is entirely
specified by ξ1 and ξD, which must satisfy ξ1 + ξD = 1
because of the constraint on the budget B = D

2 . Thus
we have reduced the EIG maximization problem to
a univariate optimization problem that can easily be
solved to machine precision, for example by gradient
methods or brute force bisection. This analytic solution
gives us the ground truth EIG, used within BO and
for evaluation, and the true optimal design, used for
evaluation.

For each of the four methods (ACE, PCE, BA and BO)
we fix the computational budget to 120 seconds per
design optimization. For the gradient-based methods
this corresponds to 1 × 104, 2 × 104, and 1.8 × 104

gradient steps for ACE, PCE, and BA, respectively.
For the BO baseline, we run 110 steps of a GP-UCB-
like algorithm (Srinivas et al., 2009) in batch-mode,
resulting in a total budget of 1650 function evaluations
of the EIG oracle. Note that for all four methods the
runtime dependence on the dimension D is negligible
in the regime in which we are operating; consequently
we use the same number of gradient or BO steps for
all D.

For the gradient-based methods, we use the Adam
optimizer with default momentum hyperparameters
and an initial learning rate of `0 = 0.1 that is expo-
nentially decayed towards a final learning rate `f that
depends on the particular method. In particular we set
`f = 1×10−4, `f = 1×10−5, and `f = 3×10−4 for the
ACE, PCE, and BA methods, respectively. For the BO
baseline, we used a Matérn kernel with a fixed length
scale ` = 0.2. These hyperparameters were chosen by
running a grid search with D = 16 and choosing hy-
perparameters that minimized the mean absolute EIG
error.

Finally we note that in Fig. 3 at each dimension D we
normalize the EIG by the factor

Z = EIG(ξ∗)− EIG(ξuniform) (75)

where ξ∗ and ξuniform are the optimal and uniform
budget designs, respectively. Consequently after nor-
malization the absolute error for the uniform budget
design ξuniform is equal to 1.

B.5 Biomolecular docking

For the docking model, we used the following indepen-
dent priors

top ∼ Beta(25, 75) (76)
bottom ∼ Beta(4, 96) (77)

ee50 ∼ N(−50, 152) (78)
slope ∼ N(−0.15, 0.12). (79)

For the design ξ = (ξ1, ..., ξ100) we had 100 binary
responses

yi ∼ Bern
(
bottom + top− bottom

1 + e−(ξi−ee50)×slope

)
. (80)

For gradient methods, we used the Adam optimizer
with learning rate 10−3 and default momentum pa-
rameters. For each method, we took 5× 105 gradient
steps (each method converged within this number of
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steps). The inference network was mean-field with the
same distributional families as the prior. We used the
following neural architecture

Operation Size Activation
Input → H1 64 ReLU
H1 → H2 64 ReLU
H2 → top 2 Softplus
H2 → bottom 2 Softplus
H2 → ee50 mean 1 -
H2 → ee50 s.d. 1 Softplus
H2 → slope mean 1 -
H2 → slope s.d. 1 Softplus

We used the following number of samples

Method Inner samples L Outer samples N
ACE 10 10
PCE 10 10
BA n/a 100

For the expert method, the design of Lyu et al. (2019),
which comprised 580 compounds, was subsampled to
comprise 100 compounds for a fair comparison.

For evaluation, we used ACE/VNMC, first training
ACE for 25000 steps using the same learning rate as
above. With the fixed inference network, we made
ACE and VNMC evaluations using L = 2× 103 inner
samples, N = 4× 106 outer samples.

B.6 Constant elasticity of substitution

We used the exact set-up of Foster et al. (2019). Specif-
ically, we take U(x) = (

∑
i x

ρ
iαi)

1/ρ and place the
following priors on ρ,α, u

ρ ∼ Beta(1, 1) (81)
α ∼ Dirichlet([1, 1, 1]) (82)

log u ∼ N(1, 3) (83)
µη = u · (U(x)− U(x′)) (84)
ση = τu · (1 + ‖x− x′‖) (85)
η ∼ N(µη, σ2

η) (86)
y = f(η) (87)

where f is the censored sigmoid function and τ = 0.005.
All designs ξ = (x,x′) were constrained to [0, 100]6.

For gradient methods, we used the Adam optimizer
with learning rate 10−3 and default momentum param-
eters. To make the design process 120 seconds per step,
we used the following number of gradient steps

Method Number of steps
ACE 1500
PCE 2500
BA 5000

We found that there was insufficient time to effectively
train a neural network guide. Instead we used a mean-
field variational family with the same distributional
families as the prior, and a linear model using the
following features: logit(y), log |logit(y)|,1(y > 0.5).

We used the following number of samples

Method Inner samples L Outer samples N
ACE 10 10
PCE 10 10
BA n/a 100

For the baseline, we used the marginal upper bound of
Foster et al. (2019) with the same variational family
used in that paper—an f -transformed Normal with
additional point masses at the end-points. We used a
GP with a Matérn52 kernel, lengthscale 20, variance
set from data, and a GP-UCB1 algorithm to make
acquisitions which were done in batches of 8.

At each stage of the sequential experiment, the poste-
rior was fitted using mean-field variational inference
using the same distributional families as the prior.

C FUTURE WORK

In this paper, we have focused on continuous design
spaces in which gradient methods are applicable. One
possible extension of our work would be to facilitate a
unified one-stage approach to experimental design over
discrete design spaces. In this case, the lower bounds
IBA, IACE and IPCE remains valid, and performing a
joint maximization over (ξ, φ) on any of these objec-
tives may be an attractive choice, although gradient
optimization would no longer be appropriate for ξ. We
envisage that one could apply existing methods for
discrete optimization to the joint optimization problem
over design and variational parameters. For instance,
a continuous relaxation of the discrete variables, or
MCMC-style updates on the discrete variables might
be used. Future work might further explore this direc-
tion.
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UNBIASED MLMC STOCHASTIC GRADIENT-BASED
OPTIMIZATION OF BAYESIAN EXPERIMENTAL DESIGNS∗

TAKASHI GODA† , TOMOHIKO HIRONAKA† , WATARU KITADE† , AND ADAM FOSTER‡

Abstract. In this paper we propose an efficient stochastic optimization algorithm to search for
Bayesian experimental designs such that the expected information gain is maximized. The gradient
of the expected information gain with respect to experimental design parameters is given by a
nested expectation, for which the standard Monte Carlo method using a fixed number of inner
samples yields a biased estimator. In this paper, applying the idea of randomized multilevel Monte
Carlo (MLMC) methods, we introduce an unbiased Monte Carlo estimator for the gradient of the
expected information gain with finite expected squared `2-norm and finite expected computational
cost per sample. Our unbiased estimator can be combined well with stochastic gradient descent
algorithms, which results in our proposal of an optimization algorithm to search for an optimal
Bayesian experimental design. Numerical experiments confirm that our proposed algorithm works
well not only for a simple test problem but also for a more realistic pharmacokinetic problem.

Key words. Bayesian experimental design, expected information gain, multilevel Monte Carlo,
nested expectation, stochastic gradient descent

AMS subject classifications. 62K05, 62L20, 65C05, 92C45, 94A17

1. Introduction. In this paper we study optimization of Bayesian experimental
designs which aim to maximize the expected amount of information experimental
outcomes convey about unobservable, or hidden/latent, random variables of interest
by carefully designing an experimental setup. Here we measure the expected amount
of information by the Shannon’s expected information gain whose definition is given
below. Our motivation comes from applications to a number of disciplines, such as
mechanical engineering [34], neuroscience [40], bioinformatics [36], psychology [23],
and pharmacokinetics [33, 32] among many others.

Let θ = (θ1, . . . , θs) ∈ Θ ⊆ Rs be a vector of continuous unobservable random
variables, and we denote the prior probability density of θ by π0(θ). The information
entropy, or the differential entropy, of θ is defined by

Eθ [− log π0(θ)] =

∫

Θ

−π0(θ) log π0(θ) dθ.

Let us consider a situation where, by conducting some experiments under an exper-
imental design ξ, an observation Y = (Y1, . . . , Yt) ∈ Y ⊆ Rt is obtained according to
the forward model

Y = fξ(θ, ε),(1.1)

where ε = (ε1, . . . , εs′) ∈ E ⊆ Rs′ , representing the observation noise, is another
vector of continuous random variables with its density ϕ(ε), and fξ is a deterministic
bi-variate function parametrized by the design ξ, possibly with multiple outputs.
Here we assume that the experimental design ξ is controllable and can be chosen as
an element in an open set X ⊂ Rd. Throughout this paper, we assume that the

∗Submitted to the editors DATE.
Funding: The work of T.G. is supported by JSPS KAKENHI Grant Number 20K0374. The

work of A.F. is kindly supported by EPSRC grant no. EP/N509711/1.
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tomohiko@g.ecc.u-tokyo.ac.jp, kitade-wataru114@g.ecc.u-tokyo.ac.jp).
‡Department of Statistics, University of Oxford, Oxford, UK (adam.foster@stats.ox.ac.uk).
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2 T. GODA, T. HIRONAKA, W. KITADE, AND A. FOSTER

domain Y is independent of ξ, that ε is independent both of θ and ξ, and also that
the likelihood function ρ(Y | θ, ξ) is strictly positive and can be computed explicitly
with unit cost for any pair of θ, ξ and Y . As is well known, Bayes’ theorem states
that the posterior probability density of θ given Y , denoted by πY |ξ, is given by

πY |ξ(θ) =
ρ(Y | θ, ξ)π0(θ)

ρ(Y | ξ) ,(1.2)

with ρ(Y | ξ) being the marginal likelihood of Y , i.e.,

ρ(Y | ξ) = Eθ [ρ(Y | θ, ξ)] =

∫

Θ

ρ(Y | θ, ξ)π0(θ) dθ,

see for instance [38]. Then, the posterior information entropy of θ after observing Y
is given by

Eθ|Y,ξ
[
− log πY |ξ(θ)

]
=

∫

Θ

−πY |ξ(θ) log πY |ξ(θ) dθ,

and hence, the expected posterior information entropy of θ by conducting an experi-
ment under an experimental design ξ is given by integrating the posterior information
entropy of θ over Y using the marginal likelihood ρ(Y | ξ), i.e.,

EY |ξEθ|Y,ξ
[
− log πY |ξ(θ)

]
=

∫

Y

∫

Θ

−πY |ξ(θ) log πY |ξ(θ) dθ ρ(Y | ξ) dY.

Now the difference

U(ξ) := Eθ [− log π0(θ)]− EY |ξEθ|Y,ξ
[
− log πY |ξ(θ)

]

is called the expected information gain, the quantity originally introduced in [21] as a
measure of experimental designs. By using Bayes’ theorem (1.2), we see that U(ξ) is
equivalently given by

U(ξ) = EθEY |θ,ξ [log ρ(Y | θ, ξ)]− EY |ξ [log ρ(Y | ξ)]
= EθEY |θ,ξ [log ρ(Y | θ, ξ)]− EY |ξ [logEθ [ρ(Y | θ, ξ)]] .(1.3)

The aim of Bayesian experimental designs is to construct an optimal experimen-
tal design ξ = ξ∗ which maximizes the expected information gain U [6]. As can be
seen from the second term of (1.3), however, estimating U(ξ) is inherently a nested
expectation problem with an outer expectation with respect to Y and an inner ex-
pectation with respect to θ, which has been considered computationally challenging.
The standard, nested Monte Carlo method generates N outer random samples for Y
first and then, for each sample of Y , generates M inner random samples for θ. To
estimate U(ξ) with root-mean-square accuracy ε,1 we typically need N = O(ε−2) and
M = O(ε−1), resulting in a total computational complexity of O(ε−3) [34, 2, 27].
Recently there have been some attempts in [16, 3] to reduce this cost to O(ε−2) or
O(ε−2(log ε−1)2) by applying a multilevel Monte Carlo (MLMC) method [12, 13] in
conjunction with Laplace approximation-based importance sampling [22]. Here the
difference between the orders of complexity for the MLMC method is a direct con-
sequence from the basic MLMC theorem, see for instance [13, Theorem 2.1], which

1Here and in what follows, the difference between the noise ε and the accuracy ε should not be
confused.
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itself depends on the properties of the constructed MLMC estimators. Nevertheless,
these results are an intermediate step towards an efficient construction of optimal
experimental designs since design optimization has been left behind.

In this paper we deal with this optimization problem more directly. More pre-
cisely, under the assumption that the experimental setup, or the set of design param-
eters, ξ lives in a continuous space such that U is differentiable with respect to ξ, we
consider applying stochastic gradient descent optimizations to search for an optimal ξ.
As we shall see, the gradient ∇ξU is again given by a nested expectation, for which the
standard, nested Monte Carlo method using a fixed number of inner samples yields a
biased estimator. By applying an unbiased MLMC method from [29], a randomized
version of the original MLMC method, we can construct an unbiased estimator of
∇ξU . This way, in this paper, we arrive at a stochastic gradient-based optimization
algorithm in which unbiased random samples to estimate ∇ξU are generated at each
iteration step.

Here we have to mention that the idea of using stochastic gradient-based methods
in Bayesian experimental designs already exists in the literature [18, 9, 10, 5, 20]. In
particular, a work by Carlon et al. [5] takes a similar standpoint in that an analytical
expression of the gradient ∇ξU is derived and then stochastic gradient-based method
is applied in conjunction with Monte Carlo estimation of ∇ξU . However, the expres-
sion of ∇ξU given in [5, Proposition 1] is proven only for the additive Gaussian noise
ε, that is, the case where the forward model is given by the form Y = fξ(θ) + ε with
ε ∼ N(0,Σ), and the standard (biased) Monte Carlo estimator is used at each itera-
tion step within stochastic gradient-based methods. In this paper we consider a more
general form of the forward model as shown in (1.1), which is useful in some appli-
cations [33, 32]. Moreover, given that stochastic gradient-based methods are usually
established under the assumption that each sample is drawn from the underlying true
distribution, using an unbiased estimator of ∇ξU should be favorable, and by doing
so, we do not need to take care of the bias-variance tradeoff. Although application
of MLMC methods to stochastic approximation algorithms have been investigated
recently in [11, 7], neither of them considers using a randomized MLMC method to
generate unbiased random samples at each iteration step.

The rest of this paper is organized as follows. In Section 2, we provide an an-
alytical expression of the gradient ∇ξU and also briefly review some of stochastic
gradient-based optimization methods. Although there are a number of stochastic op-
timization algorithms, one can use any of them in our proposal to optimize Bayesian
experimental designs (Algorithm 3.1), and we do not give any recommendation on
which method should be used in our algorithm, since it is not the objective of this
paper. Again we emphasize that the main contribution of this paper is to provide an
unbiased estimator for the gradient ∇ξU , which is non-trivial but a key assumption
in stochastic gradient-based optimization. In Section 3, after introducing a standard,
nested Monte Carlo estimator of ∇ξU , which is obviously biased, we provide an un-
biased, multilevel Monte Carlo estimator of ∇ξU and prove under some conditions
that our estimator has a finite expected squared `2-norm with finite computational
cost per sample. Our proposal for optimizing Bayesian experimental designs is given
in Algorithm 3.1. To demonstrate the effectiveness of our proposed algorithm, we
conduct numerical experiments not only for a simple test problem but also for a more
realistic pharmacokinetic (PK) problem in Section 4. We conclude this paper with
some remarks in Section 5.

2. Stochastic gradient-based optimization.
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4 T. GODA, T. HIRONAKA, W. KITADE, AND A. FOSTER

2.1. Gradient of expected information gains. In what follows, we give an
explicit form of the gradient ∇ξU . As a preparation, let us rewrite the expected
information gain U(ξ) according to (1.1) in the following way. First, by noting that
generating Y randomly conditional on θ and ξ is equivalent to computing fξ(θ, ε) for
a randomly generated ε with both θ and ξ given, the independence between ε and the
pair (θ, ξ) ensures that the first term of (1.3) is equal to

EθEε [log ρ(fξ(θ, ε) | θ, ξ)] = Eθ,ε [log ρ(fξ(θ, ε) | θ, ξ)] .

Similarly, generating Y randomly conditional only on ξ is equivalent to computing
fξ(θ, ε) for randomly generated θ and ε with a fixed ξ. Therefore, by denoting an i.i.d.
copy of θ by θ′, the second term of (1.3) is equal to

EY |ξ [logEθ′ [ρ(Y | θ′, ξ)]] = Eθ,ε [logEθ′ [ρ(fξ(θ, ε) | θ′, ξ)]] .

Thus we end up with the following expression of U(ξ):

U(ξ) = Eθ,ε [log ρ(fξ(θ, ε) | θ, ξ)]− Eθ,ε [logEθ′ [ρ(fξ(θ, ε) | θ′, ξ)]] .(2.1)

As we have stated in the previous section, we assume throughout this paper that the
likelihood function can be computed explicitly with unit cost for any pair of inputs.
Here we give some examples for which such an explicit computation of the likelihood
function is possible.

Example 2.1 (Additive noise). Let us consider a forward model given by

fξ(θ, ε) = gξ(θ) + ε,

for a uni-vatiate function gξ : Θ→ Y (= Rt) and ε ∼ N(0,Σ) with a covariance matrix
Σ and s′ = t. Then, denoting the density of ε by ϕ, we have

ρ(fξ(θ, ε) | θ′, ξ) = ϕ(ε+ gξ(θ)− gξ(θ′)),

with a special case ρ(fξ(θ, ε) | θ, ξ) = ϕ(ε).

Example 2.2 (Multiplicative noise). Let s′ = t = 1 for simplicity, and consider a
forward model given by

fξ(θ, ε) = gξ(θ)× (1 + ε),

with gξ : Rs → R>0 and ε ∼ N(0, σ2). Denoting the density of ε by ϕ, we have

ρ(fξ(θ, ε) | θ′, ξ) = ϕ

(
gξ(θ)

gξ(θ′)
(1 + ε)− 1

)
,

with a special case ρ(fξ(θ, ε) | θ, ξ) = ϕ(ε).

Example 2.3 (Mixture of additive and multiplicative noises). Finally, for t = 1
and s′ = 2, i.e., ε = (ε1, ε2) ∈ R2, let us consider a forward model described by

fξ(θ, ε) = gξ(θ)× (1 + ε1) + ε2,

with gξ : Rs → R>0, ε1 ∼ N(0, σ2
1) and ε2 ∼ N(0, σ2

2). Denoting the density of the
standard normal random variable by ϕ, we have

ρ(fξ(θ, ε) | θ′, ξ) =
1√

|gξ(θ′)|2σ2
1 + σ2

2

ϕ

(
gξ(θ)× (1 + ε1) + ε2 − gξ(θ′)√

|gξ(θ′)|2σ2
1 + σ2

2

)
,
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with a special case

ρ(fξ(θ, ε) | θ, ξ) =
1√

|gξ(θ)|2σ2
1 + σ2

2

ϕ

(
ε1gξ(θ) + ε2√
|gξ(θ)|2σ2

1 + σ2
2

)
.

Now we are ready to derive the gradient ∇ξU . Note that our claim does not
assume that the noise ε is additive and a Gaussian random variable, as discussed in
the last two examples.

Proposition 2.4. Let θ′ be an i.i.d. copy of θ. Assume that the likelihood func-
tions ρ(fξ(θ, ε) | θ, ξ) and ρ(fξ(θ, ε) | θ′, ξ) and their gradients ∇ξρ(fξ(θ, ε) | θ, ξ) and
∇ξρ(fξ(θ, ε) | θ′, ξ) are all continuous with respect to θ, θ′, ε and ξ. Then we have

∇ξU(ξ) = Eθ,ε
[∇ξρ(fξ(θ, ε) | θ, ξ)
ρ(fξ(θ, ε) | θ, ξ)

− Eθ′ [∇ξρ(fξ(θ, ε) | θ′, ξ)]
Eθ′ [ρ(fξ(θ, ε) | θ′, ξ)]

]
.

Proof. Under the continuity assumption on the likelihood function, the Leibniz
integral rule applies and we have

∇ξU(ξ) = Eθ,ε [∇ξ log ρ(fξ(θ, ε) | θ, ξ)]− Eθ,ε [∇ξ logEθ′ [ρ(fξ(θ, ε) | θ′, ξ)]]

= Eθ,ε
[∇ξρ(fξ(θ, ε) | θ, ξ)
ρ(fξ(θ, ε) | θ, ξ)

]
− Eθ,ε

[∇ξEθ′ [ρ(fξ(θ, ε) | θ′, ξ)]
Eθ′ [ρ(fξ(θ, ε) | θ′, ξ)]

]

= Eθ,ε
[∇ξρ(fξ(θ, ε) | θ, ξ)
ρ(fξ(θ, ε) | θ, ξ)

]
− Eθ,ε

[
Eθ′ [∇ξρ(fξ(θ, ε) | θ′, ξ)]
Eθ′ [ρ(fξ(θ, ε) | θ′, ξ)]

]
.

As is clear from this proposition, because of the ratio of inner expectations, the
gradient ∇ξU is inherently given by a nested expectation with an inner expectation
with respect to θ′ and an outer expectation with respect to θ and ε.

2.2. Basics of stochastic gradient-based optimization. We recall that the
aim of Bayesian experimental designs is to find an optimal experimental setup ξ = ξ∗

which satisfies
ξ∗ = arg max

ξ∈X
U(ξ),

where we recall that an open set X ⊂ Rd denotes the feasible domain of ξ. To achieve
this goal, one of the reasonable approaches is to use some gradient-based optimization
methods in which we set an initial experimental setup ξ0 ∈ X and recursively update
itself as

ξt+1 = gt(ξt,∇ξU(ξt)) for t = 0, 1, . . .,

until a certain stopping criterion is met. However, computing ∇ξU is already chal-
lenging since it is given by a nested expectation. As inferred from the results shown
in the next section, it is possible to construct an antithetic MLMC estimator which
efficiently estimates ∇ξU , but we avoid such a “pointwise” accurate gradient estima-
tion by using stochastic gradient-based optimization methods. What we need here is
an unbiased estimator of ∇ξU with finite variance and computational cost.

To simplify the presentation, let us define a vector of random variables

ψξ :=
∇ξρ(fξ(θ, ε) | θ, ξ)
ρ(fξ(θ, ε) | θ, ξ)

− Eθ′ [∇ξρ(fξ(θ, ε) | θ′, ξ)]
Eθ′ [ρ(fξ(θ, ε) | θ′, ξ)]

,(2.2)

with θ ∼ π0 and ε ∼ ϕ being the underlying stochastic variables. It follows from
Proposition 2.4 that E[ψξ] = ∇ξU(ξ). Suppose at this moment that we are able to

117



6 T. GODA, T. HIRONAKA, W. KITADE, AND A. FOSTER

generate i.i.d. random samples of ψξ. We emphasize that random sampling of ψξ is
far from trivial but we shall show in the next section that this is indeed possible.

In stochastic gradient-based optimization methods, after setting an initial exper-
imental setup ξ0 ∈ X , we recursively update itself as

ξt+1 = gt(ξt, ψξt) for t = 0, 1, . . .,

or more generally,

ξt+1 = gt

(
ξt,

1

N

N∑

n=1

ψ
(n)
ξt

)
for t = 0, 1, . . .,

where ψ
(1)
ξt
, . . . , ψ

(N)
ξt

are i.i.d. realizations of ψξt for a sample size N ∈ Z>0. This
means that, at each iteration, we only need (rough) unbiased Monte Carlo estimate
of E[ψξ] instead of the true value. There have been many examples for this recursion
gt proposed in the literature.

For instance, one of the most classical methods due to Robbins and Monro [30]
is simply given by

ξt+1 = ΠX

(
ξt + at ·

1

N

N∑

n=1

ψ
(n)
ξt

)
,

with a sequence of non-negative reals called learning rates a0, a1, . . . such that

∞∑

t=0

at =∞ and

∞∑

t=0

a2
t <∞,

where ΠX denotes the projection operator which maps the input to a closest point in
X , i.e., ΠX (ξ′) = arg minξ∈X ‖ξ − ξ′‖ with ‖ · ‖ being the Euclidean norm of vector.2

As described in [37, Chapter 5.9], for instance, if X is convex, U is strongly concave
and differentiable with respect to ξ, and E

[
‖ψξ‖22

]
< ∞ for any ξ ∈ X , then the

estimate ξt converges to the optimal ξ∗ with the mean squared error of O(1/t).
There have been many variants of the classical Robbins-Monro algorithm pro-

posed in the literature, notably such as Polyak-Ruppert averaging [26, 31] and stochas-
tic counterpart of Nesterov’s acceleration [24]. More recently, the idea of using not
only the first moment of the gradient estimate but also its second moment to set
the learning rates for individual design parameters in ξ adaptively has been explored
insensitively, especially in the machine learning community, see [8, 39, 19, 28].

3. Monte Carlo gradient estimation. Here we introduce two Monte Carlo
estimators of the gradient ∇ξU(ξ) = E[ψξ]. Subsequently we propose an algorithm
to efficiently search for optimal Bayesian experimental designs.

2Note that most of the textbooks on stochastic algorithms such as [1, 37] consider minimization
problems for which the update rule should be replaced by

ξt+1 = ΠX

(
ξt − at ·

1

N

N∑

n=1

ψ
(n)
ξt

)
,

and the objective function is often assumed to be convex instead of concave.
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3.1. Standard Monte Carlo. The standard Monte Carlo method is one of the
easiest and the most straightforward methods to approximate ψξ. Let us estimate two
expectations with respect to θ′ by the Monte Carlo averages using common random
samples of θ′, respectively. Namely, for randomly chosen θ and ε, let

ψξ,M :=
∇ξρ(fξ(θ, ε) | θ, ξ)
ρ(fξ(θ, ε) | θ, ξ)

− ∇%ξ,M (θ, ε)

%ξ,M (θ, ε)
,

with

%ξ,M (θ, ε) =
1

M

M∑

m=1

ρ(fξ(θ, ε) | θ′(m), ξ),

∇%ξ,M (θ, ε) =
1

M

M∑

m=1

∇ξρ(fξ(θ, ε) | θ′(m), ξ),

where θ′(1), . . . , θ′(M) are independent samples from the prior distribution π0. More
generally, for an importance distribution q which may depend on the value of fξ(θ, ε)
or the outer random variables θ and ε, we can consider

ψξ,M,q :=
∇ξρ(fξ(θ, ε) | θ, ξ)
ρ(fξ(θ, ε) | θ, ξ)

− ∇%ξ,M,q(θ, ε)

%ξ,M,q(θ, ε)
,(3.1)

with

%ξ,M,q(θ, ε) =
1

M

M∑

m=1

ρ(fξ(θ, ε) | θ′(m), ξ)π0(θ′(m))

q(θ′(m))
,

∇%ξ,M,q(θ, ε) =
1

M

M∑

m=1

∇ξρ(fξ(θ, ε) | θ′(m), ξ)π0(θ′(m))

q(θ′(m))
,

where θ′(1), . . . , θ′(M) are independent samples from the distribution q.
Although it holds from the linearity of expectation that

E [%ξ,M,q(θ, ε) | θ, ε] = Eθ′ [ρ(fξ(θ, ε) | θ′, ξ)] ,
E [∇%ξ,M,q(θ, ε) | θ, ε] = Eθ′ [∇ξρ(fξ(θ, ε) | θ′, ξ)] ,

for any M , i.e., both the denominator and the numerator themselves are estimated
without any bias, respectively, taking the ratio between these two yields

E[ψξ,M ],E[ψξ,M,q] 6= E[ψξ] = ∇ξU(ξ)

unless q = πfξ(θ,ε)|ξ. This means that neither ψξ,M nor ψξ,M,q is an unbiased estimator
of the gradient ∇ξU(ξ).

3.2. Unbiased multilevel Monte Carlo. Here we introduce an unbiased mul-
tilevel Monte Carlo estimator by using the debiasing technique from [29] which itself
is an extension of the multilevel Monte Carlo method due to Giles [12, 13]. Let us
consider an increasing sequence 0 < M0 < M1 < . . . such that M` → ∞ as ` → ∞.
Then the strong law of large numbers ensures that

P
[

lim
`→∞

ψξ,M`,q = ψξ

]
= 1,
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8 T. GODA, T. HIRONAKA, W. KITADE, AND A. FOSTER

see for instance [25, Theorem 9.2], and so the following telescoping sum holds:

∇ξU(ξ) = E[ψξ] = lim
`→∞

E[ψξ,M`,q] = E[ψξ,M0,q] +

∞∑

`=1

E[ψξ,M`,q − ψξ,M`−1,q].

More generally, suppose at this moment that we have a sequence of correction random
variables ∆ψξ,0,∆ψξ,1, . . . such that E[∆ψξ,0] = E[ψξ,M0,q] and

E[∆ψξ,`] = E[ψξ,M`,q − ψξ,M`−1,q] for ` > 0.

Then it holds that

∇ξU(ξ) = E[ψξ] =

∞∑

`=0

E[∆ψξ,`].(3.2)

For any sequence of positive reals w0, w1, . . . such that w0 + w1 + · · · = 1, the expec-
tation of the random variable

∆ψξ,`
w`

with the index ` ≥ 0 being selected randomly with probability w`, is equal to the
gradient ∇ξU(ξ). In fact, it is easy to see that

E
[

∆ψξ,`
w`

]
=

∞∑

`=0

E[∆ψξ,`]

w`
w` =

∞∑

`=0

E[∆ψξ,`] = ∇ξU(ξ).

Therefore, for any number of outer samples N ∈ Z>0,

1

N

N∑

n=1

∆ψξ,`(n)

w`(n)

with `(1), . . . , `(N) being independent and randomly chosen with probability w` is an
unbiased Monte Carlo estimator of ∇ξU(ξ).

Let C` denote the expected cost of computing ∆ψξ,`, which is proportional to M`.
In order for the random variable ∆ψξ,`/w` to have finite expected squared `2-norm
and finite expected computational cost, we must have

∞∑

`=0

E[‖∆ψξ,`‖22]

w`
<∞ and

∞∑

`=0

C`w` <∞.(3.3)

Thus construction of such correction variables ∆ψξ,` in conjunction with an associated
sequence w0, w1, . . ., which has not been discussed yet, becomes a central issue.

3.2.1. Naive construction. Throughout this paper let us consider a geometric
progression M` = M02` for some M0 ∈ Z≥0. Although it is possible to change the
base of the progression to a general integer b ≥ 2, we restrict ourselves to the case
b = 2 for simplicity of exposition.

Probably the most straightforward form of the correction variables ∆ψξ,0,∆ψξ,1, . . .
is ∆ψξ,0 = ψξ,M0,q and

∆ψξ,` = ψξ,M02`,q − ψξ,M02`−1,q,

120



MLMC STOCHASTIC OPTIMIZATION OF BAYESIAN DESIGN 9

for ` > 0, where both ψξ,M02`−1,q and ψξ,M02`,q are given as in (3.1) with M = M02`−1

and M = M02`, respectively. Here, instead of using mutually independent M02`−1

and M02` samples on θ′ to compute ψξ,M02`−1,q and ψξ,M02`,q, respectively, a subset
with size M02`−1 of the M02` samples on θ′ used to compute ψξ,M02`,q, can be reused
to compute ψξ,M02`−1,q by the linearity of expectation. By doing so, it is expected that
E[‖∆ψξ,`‖22] is much smaller in magnitude than E[‖ψξ,M02`,q‖22] (or E[‖ψξ,M02`−1,q‖22]).

However, it seems not possible that the order of E[‖∆ψξ,`‖22] is better than O(2−`).
Recalling that C` ∝ M` ∝ 2`, a faster decay of E[‖∆ψξ,`‖22] is required to find a
sequence of positive reals w0, w1, . . . which satisfies the condition (3.3). We conjecture
that a lower bound on E[‖∆ψξ,`‖22] of order 2−` exists for this naive construction.

3.2.2. Antithetic construction. Motivated by the MLMC literature [15, 4,
14, 16, 17], we address this issue by considering the following antithetic coupling in
this paper. A key ingredient here is that we can take two disjoint subsets with equal
size M02`−1 of the M02` samples on θ′ used to compute ψξ,M02`,q, which results in

two independent realizations of ψξ,M02`−1,q, denoted by ψ
(a)

ξ,M02`−1,q
and ψ

(b)

ξ,M02`−1,q
,

respectively. To be more precise, for the independent samples θ′(1), . . . , θ′(M02`) gen-
erated from the distribution q, we write

ψξ,M02`,q =
∇ξρ(fξ(θ, ε) | θ, ξ)
ρ(fξ(θ, ε) | θ, ξ)

− ∇%ξ,M02`,q(θ, ε)

%ξ,M02`,q(θ, ε)
,

ψ
(a)

ξ,M02`−1,q
=
∇ξρ(fξ(θ, ε) | θ, ξ)
ρ(fξ(θ, ε) | θ, ξ)

−
∇%(a)

ξ,M02`−1,q
(θ, ε)

%
(a)

ξ,M02`−1,q
(θ, ε)

, and

ψ
(b)

ξ,M02`−1,q
=
∇ξρ(fξ(θ, ε) | θ, ξ)
ρ(fξ(θ, ε) | θ, ξ)

−
∇%(b)

ξ,M02`−1,q
(θ, ε)

%
(b)

ξ,M02`−1,q
(θ, ε)

,

where, for the second term of each, we have defined

%ξ,M02`,q(θ, ε) =
1

M02`

M02`∑

m=1

ρ(fξ(θ, ε) | θ′(m), ξ)π0(θ′(m))

q(θ′(m))
,

∇%ξ,M02`,q(θ, ε) =
1

M02`

M02`∑

m=1

∇ξρ(fξ(θ, ε) | θ′(m), ξ)π0(θ′(m))

q(θ′(m))
,

%
(a)

ξ,M02`−1,q
(θ, ε) =

1

M02`−1

M02`−1∑

m=1

ρ(fξ(θ, ε) | θ′(m), ξ)π0(θ′(m))

q(θ′(m))
,

∇%(a)

ξ,M02`−1,q
(θ, ε) =

1

M02`−1

M02`−1∑

m=1

∇ξρ(fξ(θ, ε) | θ′(m), ξ)π0(θ′(m))

q(θ′(m))
,

%
(b)

ξ,M02`−1,q
(θ, ε) =

1

M02`−1

M02`∑

m=M02`−1+1

ρ(fξ(θ, ε) | θ′(m), ξ)π0(θ′(m))

q(θ′(m))
,

∇%(b)

ξ,M02`−1,q
(θ, ε) =

1

M02`−1

M02`∑

m=M02`−1+1

∇ξρ(fξ(θ, ε) | θ′(m), ξ)π0(θ′(m))

q(θ′(m))
,

respectively.
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Now a sequence of the correction random variables ∆ψξ,0,∆ψξ,1, . . . is defined by
∆ψξ,0 = ψξ,M0,q and

∆ψξ,` = ψξ,M02`,q −
ψ

(a)

ξ,M02`−1,q
+ ψ

(b)

ξ,M02`−1,q

2
(3.4)

=
1

2


∇%

(a)

ξ,M02`−1,q
(θ, ε)

%
(a)

ξ,M02`−1,q
(θ, ε)

+
∇%(b)

ξ,M02`−1,q
(θ, ε)

%
(b)

ξ,M02`−1,q
(θ, ε)


− ∇%ξ,M02`,q(θ, ε)

%ξ,M02`,q(θ, ε)
,

for ` > 0. The difference between this antithetic construction and the naive construc-
tion is that ψξ,M02`−1,q has been replaced by the mean of ψ

(a)

ξ,M02`−1,q
and ψ

(b)

ξ,M02`−1,q
.

This means that each of the M02` samples is used exactly twice in antithetic con-

struction: once in ψξ,M02`,q and once in either ψ
(a)

ξ,M02`−1,q
or ψ

(b)

ξ,M02`−1,q
. For this

novel version of ∆ψξ,`, the linearity of expectation ensures

E [∆ψξ,`] = E
[
ψξ,M02`,q

]
− 1

2

(
E
[
ψ

(a)

ξ,M02`−1,q

]
+ E

[
ψ

(b)

ξ,M02`−1,q

])

= E
[
ψξ,M02`,q

]
− 1

2

(
E
[
ψξ,M02`−1,q

]
+ E

[
ψξ,M02`−1,q

])

= E[ψξ,M02`,q − ψξ,M02`−1,q],

so that it fits with the telescoping sum representation (3.2) of the gradient ∇ξU(ξ).
Despite the distinction being subtle, we will show that the antithetic construction has
better properties than the naive construction. Hereafter, ∆ψξ,` refers to the antithetic
construction given in (3.4).

It is clear that the cost C` to compute ∆ψξ,` is proportional to 2`, and also that
the following antithetic properties hold for ∆ψξ,`:

%ξ,M02`,q(θ, ε) =
1

2

(
%

(a)

ξ,M02`−1,q
(θ, ε) + %

(b)

ξ,M02`−1,q
(θ, ε)

)
, and

∇%ξ,M02`,q(θ, ε) =
1

2

(
∇%(a)

ξ,M02`−1,q
(θ, ε) +∇%(b)

ξ,M02`−1,q
(θ, ε)

)
,

(3.5)

which play a crucial role in showing that this antithetic construction achieves a faster
decay rate of E[‖∆ψξ,`‖22] than the naive construction, making it possible to find a
sequence of positive reals w0, w1, . . . which satisfies the condition (3.3). The following
claim is the main theoretical result of this paper.

Theorem 3.1. Assume that

sup
θ,θ′,ε

‖∇ξ log ρ(fξ(θ, ε) | θ′, ξ)‖∞ <∞,

and that there exists u > 2 such that

Eθ∼π0,θ′∼q,ε

[∣∣∣∣
ρ(fξ(θ, ε) | θ′, ξ)π0(θ′)
ρ(fξ(θ, ε) | ξ)q(θ′)

∣∣∣∣
u]

<∞.

Then the following holds true:
1. For a fixed `, we have

E[‖∆ψξ,`‖22] = O(2−β`) with β =
min (u, 4)

2
.
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2. In order to have (3.3), it suffices to choose w` ∝ 2−τ` with 1 < τ < β.

We postpone the proof of the theorem to Appendix A.

Remark 3.2. It follows from the first item of Theorem 3.1 that

E[‖∆ψξ,`‖2] = O(2−`),

for a fixed `. Using this property, the bias of the standard Monte Carlo estimator
ψξ,M02L,q with M = M02L inner samples is bounded as

∥∥∇ξU(ξ)− E[ψξ,M02L,q]
∥∥

2
=

∥∥∥∥∥
∞∑

`=L+1

E[∆ψξ,`]

∥∥∥∥∥
2

≤
∞∑

`=L+1

E
[
‖∆ψξ,`‖2

]

= O(2−L) = O(M−1).

This means that, for small M , the standard Monte Carlo estimator may lead to a
wrong trajectory of an experimental design in stochastic gradient-biased optimization
and the resulting design will not be close to optimal.

3.3. Unbiased MLMC stochastic optimization. Finally we arrive at our
proposal of a stochastic algorithm to search for an optimal Bayesian experimental
design ξ∗ ∈ X as summarized in Algorithm 3.1. Here we note that Algorithm 3.1
assumes that the conditions appearing in Theorem 3.1 hold for any ξ ∈ X with a
common value of u. Given additional assumptions that the domain X is convex and
that U is strongly concave and differentiable with respect to ξ, most of the stochastic
gradient-based optimization algorithms have a theoretical guarantee that ξt converges
to the optimal ξ∗ ∈ X with some decay rate, typically with the mean square error of
O(1/t) as mentioned in Section 2.2.

Algorithm 3.1 Unbiased MLMC stochastic optimization

For a given 1 < τ < β, set w0, w1, . . . > 0 such that w0 +w1 + · · · = 1 and w` ∝ 2−τ`.
For the feasible set X , initialize ξ0 ∈ X and t = 0. For N ∈ Z>0, do the following:

1. Choose `(1), . . . , `(N) ∈ Z≥0 independently and randomly with probability w`.
2. Compute an unbiased MLMC estimate of the gradient ∇ξU at ξ = ξt:

1

N

N∑

n=1

∆ψξt,`(n)

w`(n)

.

3. Apply a stochastic gradient-based algorithm to get ξt+1:

ξt+1 = gt

(
ξt,

1

N

N∑

n=1

∆ψξt,`(n)

w`(n)

)
.

4. Check whether a certain stopping criterion is satisfied. If yes, stop the itera-
tion. Otherwise, go to Step 1 with t← t+ 1.

As in [2, 16, 5], using Laplace approximation-based importance distribution for
q helps not only reduce the expected squared `2-norm of the Monte Carlo gradient
estimator but also avoid numerical instability coming from concentrated posterior
measures of θ′ given fξ(θ, ε). We also refer to [35] for some theoretical analyses on
the Laplace approximation.
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4. Numerical experiments. Here, we conduct numerical experiments on two
example problems in Bayesian experimental design. The first example is aimed at
verifying our proposed algorithm by using a simple test problem. Then, in order
to see practical performance of our algorithm, we consider a PK model used in [33]
for our second example. The Python code used in our experiments is available from
https://github.com/Goda-Research-Group/MLMC stochastic gradient.

4.1. Simple test case. Let θ = (θ1, θ2) ∈ R2
>0 with θ1, θ2

iid∼ lognormal(µ, σ2
0).

For an experimental design ξ ∈ R>0, let an observation Y = (Y1, Y2) ∈ R2
>0 follow

Y1 | θ, ξ ∼ lognormal(g(ξ) log θ1, σ
2
ε ),

Y2 | θ, ξ ∼ lognormal(h(ξ) log θ2, σ
2
ε ),

for some functions g and h. This is equivalent to consider the following forward model:

Y1 = eg(ξ) log θ1+σεε1 ,

Y2 = eh(ξ) log θ2+σεε2 ,

for ε1, ε2
iid∼ N(0, 1) independently of θ and ξ, which is obviously a special case of

(1.1). The expected information gain for a given ξ is analytically calculated as

U(ξ) =
1

2
log

(
(g(ξ))

2 σ
2
0

σ2
ε

+ 1

)(
(h(ξ))

2 σ
2
0

σ2
ε

+ 1

)
.

Also, applying Jensen’s inequality to (2.1), we see that U(ξ) is bounded above by

U(ξ) ≤ Ũ(ξ) := Eθ,ε [log ρ(fξ(θ, ε) | θ, ξ)]− Eθ,θ′,ε [log ρ(fξ(θ, ε) | θ′, ξ)]

= (g(ξ))
2 σ

2
0

σ2
ε

+ (h(ξ))
2 σ

2
0

σ2
ε

.

Here we note that the standard Monte Carlo gradient estimator with M = 1 inner
sample from the prior distribution, i.e., ψξ,1, is nothing but an unbiased estimator of

∇ξŨ(ξ). Therefore, as long as

ξ∗ = arg max
ξ∈R>0

U(ξ) 6= arg max
ξ∈R>0

Ũ(ξ)

holds, stochastic gradient-based optimization based on ψξ,1 will not converge to the
optimal design ξ∗. In our experiments below, let µ = 0, σ0 = σε = 1,

g(ξ) = e−ξ
2/2 and h(ξ) =

√
3

2

(
1− e−ξ2

)
.

Fig. 1 compares U and Ũ as functions of ξ for this setting. The optimal design which
maximizes U is given by ξ∗ =

√
log 3 ≈ 1.048 . . . and we can observe that U is concave

around ξ∗. On the other hand, its upper bound Ũ is a strictly monotone increasing
function and its supremum attains for ξ →∞.

Throughout this subsection, we do not use any importance sampling for the un-
biased MLMC estimator of ∇ξU and set M0, the number of level 0 inner samples, to
1. The left panel of Fig. 2 shows the convergence behavior of the MLMC correction
variables ∆ψξ,` at ξ = 1.5. Here the mean squares (expected squared `2-norms) of
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Fig. 1. The expected information gain U and its upper bound Ũ for the test case.
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Fig. 2. The mean squares of the variables ψξ,M` and ∆ψξ,` for the test case at ξ = 1.5 (left)

and at ξ = ξ∗ =
√

log 3 (right).

ψξ,M`
and ∆ψξ,` are plotted on a log2 scale as functions of the level `, where the

means are estimated empirically by using 105 i.i.d. samples at each level. While the
mean square of ψξ,M`

takes an almost constant value for ` > 4, that of ∆ψξ,` decreases
geometrically as the level increases. The linear regression of the data for the range
1 ≤ ` ≤ 10 provides an estimation of β as 1.64, which agrees well with the theoretical
result in Theorem 3.1. As shown in the right panel of Fig. 2, a similar convergence
behavior of the MLMC correction variables ∆ψξ,` can be observed at the optimal
design ξ = ξ∗ =

√
log 3, where β is estimated as 1.63.

Such a fast geometric decay of the correction variables ∆ψξ,` justifies us to apply
Algorithm 3.1 to search for the optimal design ξ∗. In order to randomly choose the
level `, we set τ = 1.5 and w` = 2−3`/2(1 − 2−3/2). This implies that the expected
number of inner samples used in the MLMC estimator is given by

∞∑

`=0

2`w` = (1− 2−3/2)

∞∑

`=0

2−`/2 =
1− 2−3/2

1− 2−1/2
≈ 2.21.

For comparison, we also consider the standard Monte Carlo estimators ψξ,M for the
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gradient of the expected information gain with various values of M = 1, 2, 4, . . . , 64
within stochastic gradient descent. We fix the number of outer samples N to 2000
throughout all the iteration steps for all the estimators. We use the Robbins-Monro
algorithm with Polyak-Ruppert averaging and the learning rates αt = 5/(t + 1) as
a stochastic descent algorithm, and as the computational cost is proportional to the
number of inner samples, we set the maximum iteration steps T to b107/Mc, the
largest integer less than or equal to 107/M . Although the number of inner samples
is a random variable for the MLMC estimator, we simply set T to b107/2.21c. The
initial design candidate at t = 0 is given by ξ0 = 1.5 and the feasible set X is set to
R>0. Hence the maximum increment of the expected information gain is U(

√
log 3)−

U(1.5) ≈ 0.0148. For each gradient estimator, we conduct 10 independent runs and
compute the average of the distance ‖ξt − ξ∗‖22 and its standard error for all the
iteration steps, which correspond to the line and the shaded area of Fig. 3, respectively.

Fig. 3 shows the convergence behaviors of the estimated experimental design ξt
for the considered estimators of the gradient ∇ξU . Note here that the horizontal axis
is given by M × t as a measure of the total computational cost (here again, we simply
let M = 2.21 for the MLMC estimator) and both axes use the logarithmic scales. As
expected, the standard Monte Carlo estimator with M = 1 leads to larger values of ξt
which make Ũ large, so that the search goes in wrong direction. Even for M = 2, the
situation is not improved so much and the experimental design ξt remains almost the
same throughout the iterations. For larger values of M , the standard Monte Carlo
estimator works in the early stages, making the distance ‖ξt − ξ∗‖22 small. However,
after some iteration steps, the estimate ξt converges to some point away from the
optimal ξ∗. Although it is natural that such bias can be reduced simply by increasing
M , a proper choice of M in practical applications is far from trivial since larger M
means a larger computational cost and the bias seems extremely hard to estimate in
advance. This is exactly the point where the unbiased MLMC estimator can help.
As the black line shows, the distance ‖ξt − ξ∗‖22 decreases consistently from the early
stage and overtakes the standard Monte Carlo estimators with fixed M , leading to a
better estimate of the optimal experimental design. The linear regression of the data
for the whole range 0 < log10(Mt) ≤ 7 shows that the estimate ξt converges to ξ∗

with the mean squared error of order t−1.12 approximately, which is almost consistent
with the standard stochastic optimization theory [37, Chapter 5.9]. A slightly faster
decay of the standard Monte Carlo estimators with M ≥ 8 in the early stages could
be because that they estimate the gradients of biased objective functions which are
steeper than the gradient of U(ξ) around the initial estimate ξ0 = 1.5 in this case.

4.2. Pharmacokinetic model. Let us consider a PK design problem intro-
duced in [33]. Suppose that a drug with a fixed dose D = 400 is administrated to
subjects at time T = 0. In order to reduce the uncertainty about a set of PK param-
eters, which affect the absorption, distribution and the elimination of the drug in the
subjects’ body, it would be helpful to take blood samples of the subjects at several
different times and to measure the concentration of the drug in the samples. Blood
samples are assumed to be taken 15 times at T = ξ(1), . . . , ξ(15) hours after the drug
administration. Given the set of 15 drug concentration measurements, it is expected
that the uncertainty of PK parameters of interest θ can be reduced. Our objective
here is to optimize sampling times ξ = (ξ(1), . . . , ξ(15)) ∈ R15

≥0 such that the expected
information gain brought from blood sampling is maximized.

Let θ = (log ka, log ke, log V ) ∈ R3 where ka represents the first-order absorption
rate constant, ke does the first-order elimination rate constant and V does the volume
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Fig. 3. The convergence of the estimated experimental design ξt to the optimal ξ∗ for various
Monte Carlo estimators of the gradient ∇ξU . For each estimator, the line and the shaded area
represent the average and its standard error estimated from 10 independent runs, respectively.

of distribution. Following [33], assume that the drug concentration of blood sample
taken at time T ≥ 0 is described as

YT =
Dka

V (ka − ke)
(
e−keT − e−kaT

)
(1 + ε1) + ε2 =: gT (θ, ε),

with ε = (ε1, ε2), where ε1 and ε2 represent the multiplicative and additive Gaussian
noises, respectively. Then our forward model is given by

Y = (Yξ(1) , . . . , Yξ(15)) =
(
gξ(1)(θ, εξ(1)), . . . , gξ(15)(θ, εξ(15))

)
∈ R15,

where εξ(1) , . . . , εξ(15) are assumed mutually independent and follow the same bi-variate
normal distribution

εξ(j) ∼ N
((

0
0

)
,

(
0.01 0

0 0.1

))
.

The input random variables in θ are assumed independent and the corresponding
probability distributions are given by log ka ∼ N(0, 0.05), log ke ∼ N(log(0.1), 0.05)
and log V ∼ N(log(20), 0.05), respectively. This means that the prior information en-
tropy of θ is equal to 3 log(

√
2πe× 0.05) ≈ −0.2368. Moreover, the likelihood function

is given by the product of ρ(gξ(j)(θ, εξ(j)) | θ′, ξ(j)) that can be computed explicitly by
following Example 2.3.

In this setting the posterior distribution of θ given Y cannot be computed ana-
lytically. In order to reduce the expected squared `2-norm of the unbiased MLMC
estimator of the gradient ∇ξU , we use Laplace approximation-based importance sam-
pling. Since not only the additive noise but also the multiplicative noise are included
in the forward model, we consider a simple modification of the original method in [22]
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as follows. Let us write

gT (θ) =
Dka

V (ka − ke)
(
e−keT − e−kaT

)
and gξ(θ) =

(
gξ(1)(θ), . . . , gξ(15)(θ)

)
.

Then, for the data Y generated conditionally on the known value of θ = θ∗ from
the forward model, we approximate the posterior distribution πY |ξ(θ) by a Gaussian

distribution N(θ̂, Σ̂) with

θ̂ = θ∗ −
(
J(θ∗)>Σ−1

ε J(θ∗) +H(θ∗)>Σ−1
ε E −∇θ∇θ log π0(θ∗)

)−1
J(θ∗)>Σ−1

ε E,

Σ̂ =
(
J(θ̂)>Σ−1

ε J(θ̂)−∇θ∇θ log π0(θ̂)
)−1

.

Here J and H denote the Jacobian and Hessian of −gξ, respectively, that is, J(θ) =
−∇θgξ(θ) and H(θ) = −∇θ∇θgξ(θ). Also we write E := Y > − gξ(θ∗)> and

Σε = diag
(

0.01
(
gξ(1)(θ)

)2
+ 0.1, . . . , 0.01

(
gξ(15)(θ)

)2
+ 0.1

)
.

We use this N(θ̂, Σ̂) as an importance distribution q. The only difference from the
one in [22] is that the matrix Σε depends on the mean response gξ(θ) due to the
multiplicative noise in our setting. Although a first-order approximation argument
similar to [22] might be possible and lead to different forms of θ̂ and Σ̂, such a detailed
analysis on the Laplace approximation is beyond the scope of this paper.

In order to search for optimal design parameters ξ = (ξ(1), . . . , ξ(15)), we do not
represent them by a smaller number of parameters as considered in [33], but instead
we optimize them directly. We set a design at the initial iteration step t = 0 to
equi-spaced times ξ0 = (1, 2, . . . , 15). In Algorithm 3.1, we fix M0 = 1, set w0 = 0.9
and w` ∝ 2−3`/2 for ` ≥ 1 such that they are summed up to 1, and set the number
of outer samples to N = 2000 at each iteration step. This implies that the expected
number of inner samples used in the MLMC estimator is given by

∞∑

`=0

2`w` =
9

10
+

23/2 − 1

10

∞∑

`=1

2−`/2 ≈ 1.34.

We use the AMSGrad optimizer with constant learning rate αt = 0.004 and exponen-
tial moving average parameters β1 = 0.9, β2 = 0.999 as a stochastic descent algorithm,
and set the maximum iteration steps T to 10000 as a stopping criterion. The feasible
domain X is restricted to [0, 24]15. For comparison, we also consider the standard
(biased) Monte Carlo estimator for the gradient ∇ξU with a fixed number of inner
samples M = 1 and the Laplace approximation-based importance sampling within
stochastic gradient descent. As expected from the numerical results shown in [5], the
Laplace approximation-based importance sampling helps reduce the bias of the Monte
Carlo estimator significantly even for M = 1.

Fig. 4 shows the set of design parameters ξ = (ξ(1), . . . , ξ(15)) obtained at the iter-
ation steps t = 0, 100, 500, 1000, 5000, 10000 for a single run. The overall convergence
behaviors both for the standard Monte Carlo estimator and the MLMC estimator look
quite similar to each other. That is, the allocations of 15 sampling times become irreg-
ular at the earlier steps compared to the initially equi-spaced design, but then some
of sampling times gradually get quite close to each other, ending up with three well-
separated clusters. It is interesting to see that stochastic gradient-based optimization
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(a) stdMC

(0.38, 0.38, 0.39)︸ ︷︷ ︸
3

(4.41, 4.41, 4.46, 4.47, 4.49)︸ ︷︷ ︸
5

(20.13, 20.15, 20.20, 20.22, 20.24, 20.25, 20.25)︸ ︷︷ ︸
7

(b) MLMC

(0.31, 0.33, 0.40)︸ ︷︷ ︸
3

(4.59, 4.63, 4.64, 4.64, 4.64, 4.68)︸ ︷︷ ︸
6

(20.70, 20.70, 20.70, 20.71, 20.73, 20.74)︸ ︷︷ ︸
6

Fig. 4. Design parameters (ξ1, . . . , ξ15) within the interval [0, 24] during the optimization pro-
cess for a single run at the iteration steps t = 0, 100, 500, 1000, 5000, 10000 (in descending order):
(a) the result for stdMC and (b) the result for MLMC. The resulting design is shown in detail
respectively at the bottom.

naturally finds such so-called replicate design that is often considered in the PK ap-
plications [32, 33]. Looking into the details, there is a difference between the resulting
designs obtained by the standard Monte Carlo estimator and the MLMC estimator.
For the standard Monte Carlo estimator, the number of sampling times allocated to
each cluster is 3, 5, 7 (from earlier one to later one), respectively, whereas the corre-
sponding number is 3, 6, 6, respectively, for the MLMC estimator. These allocations
of sampling times are consistent among 10 independent runs for both the estimators.
The average sampling time (with its standard deviation) within each cluster, esti-
mated from 10 independent runs, is 0.385 (0.003), 4.442 (0.008), 20.202 (0.006) for the
standard Monte Carlo estimator, and is 0.367 (0.010), 4.652 (0.018), 20.699 (0.017) for
the MLMC estimator. The two-sample Wilcoxon test yields the p-value about 10−5

for all of the three clusters, which supports that the differences between the centers
of the clusters obtained by the two estimators are statistically significant.

Fig. 5 shows the convergence behaviors of the MLMC correction variables ∆ψξ,` at
the iteration steps t = 0, T/2, T for a single run. Similarly to Fig. 2. the mean squares
(expected squared `2-norms) of ψξ,M`

and ∆ψξ,` are plotted on a log2 scale as functions
of the level `, where the means are estimated empirically by using 105 i.i.d. samples at
each level. While the mean square of ψξ,M`

takes an almost constant value for ` > 4,
that of ∆ψξ,` decreases geometrically as the level increases. The linear regression
of the data for the range 1 ≤ ` ≤ 10 provides estimations of β as 0.80, 1.36, 1.47,
respectively. The result on the case β ≤ 1 is not covered by Theorem 3.1, and in such
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Fig. 5. The mean squares of the variables ψξ,M` and ∆ψξ,` for the PK model at the iteration
steps t = 0, T/2, T

a case, we do not have a right choice of w` which leads to both finite expected cost
and finite expected squared `2-norm. Further theoretical investigation is needed to
address this issue. On the other hand, the result β > 1 for the steps t = T/2, T is as
expected from our theoretical result. Nonetheless, our choice w` ∝ 2−3`/2 might be a
bit aggressive in the sense that the expected squared `2-norm of the MLMC estimator
possibly does not converge, although we see no evidence of this in our experiments.
A practical issue on how to choose w` properly depending on the problem at hand is
also left open for future research.

Finally, Fig. 6 shows the behaviors of the expected information gain U as a func-
tion of the number of iteration steps. For this problem, the expected information
gain for any design parameter ξ cannot be evaluated exactly, so that we use a ran-
domized variant of the MLMC estimator introduced in [16] with 106 outer samples to
estimate the expected information gain for every 500 steps. As 10 independent runs
are performed, we plot the average of 10 estimated values in mark, while the shaded
area represents the linearly interpolated standard error. We can see that the expected
information gain increases with some fluctuation as the iteration proceeds, and con-
verges to a constant value. The average converged value for the MLMC estimator is
4.544, which is slightly larger than 4.535 obtained for the standard Monte Carlo esti-
mator. Note that the expected information gain for the initial design is estimated as
3.774, which is well below the maximum values obtained both for the standard Monte
Carlo estimator and the MLMC estimator. Just to provide an intuition of this im-
provement, assume that each individual variable in θ remains independent and follows
a normal distribution with an equal variance even after observing Y , which is usually
not true. Then it is inferred that the variance of each variable after observing Y
with the initial design is reduced on average by the factor (exp(3.774/3))2 ≈ 12.379,
whereas that with the resulting design by our proposed optimization algorithm is
(exp(4.554/3))2 ≈ 20.822. Although the increment of the maximum expected infor-
mation gain by using the MLMC estimator seems marginal as compared to the the
standard Monte Carlo estimator in this example, it is important to emphasize again
that the resulting experimental designs are qualitatively different.

5. Conclusion. In this paper we have developed an efficient stochastic algorithm
to optimize Bayesian experimental designs such that the expected information gain is
maximized. Since the gradient of the expected information gain with respect to design
parameters is expressed as a nested expectation, a straightforward use of stochastic
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Fig. 6. The behavior of the expected information gain as a function of the number of iteration
steps for the PK model

gradient-based optimization algorithms in which the number of inner Monte Carlo
samples is kept fixed only gives a biased solution of Bayesian experimental design
unless i.i.d. sampling from the exact posterior distribution is possible. To overcome
this issue, we have introduced an unbiased antithetic multilevel Monte Carlo estima-
tor for the gradient of the expected information gain, and have proven under some
conditions that our estimator is unbiased and has finite expected squared `2-norm and
finite computational cost per one sample. This way, combining our unbiased multi-
level estimator with stochastic gradient-based optimization algorithms leads to a novel
stochastic algorithm to search for optimal Bayesian experimental designs without suf-
fering from any bias. Numerical experiments for a simple test case show that our
proposed algorithm can find the true optimal Bayesian experimental design with the
convergence behavior as expected from the standard stochastic optimization theory
which is built upon the underlying assumption that an unbiased gradient estimation is
possible. In contrast, using the standard Monte Carlo estimator with a fixed number
of inner samples fails to reach the optimal design. Moreover, our proposed algorithm
performs well for a more realistic pharmacokinetic test problem and gives a higher
expected information gain and qualitatively different sampling times compared to
designs obtained by the existing standard Monte Carlo estimator.
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Appendix A. Proof of Theorem 3.1. The proof for the first assertion follows
an argument similar to that of [17, Lemma 3.9] which considers a nested expectation
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involving the ratio of two scalar inner conditional expectations. Since the numerator
is vector-valued in our setting, however, we give a proof for the sake of completeness.

First let us recall the following result proven, for instance, in [14, Lemma 1].

Lemma A.1. Let X be a real-valued random variable with mean zero, and let XN

be an average of N i.i.d. samples of X. If E[|X|u] < ∞ for u > 2, there exists a
constant Cu > 0 depending only on u such that

E
[∣∣XN

∣∣u
]
≤ Cu

E[|X|u]

Nu/2
and P

[∣∣XN

∣∣ > c
]
≤ Cu

E[|X|u]

cuNu/2
,

for any c > 0.

For any θ, ε and ξ, we write ρ(fξ(θ, ε) | ξ) = Eθ′ [ρ(fξ(θ, ε) | θ′, ξ)] and also
∇ξρ(fξ(θ, ε) | ξ) = Eθ′ [∇ξρ(fξ(θ, ε) | θ′, ξ)]. For randomly chosen θ and ε, we define
an extreme event A by

A :=





∣∣∣∣∣∣
%

(a)

ξ,M02`−1,q
(θ, ε)

ρ(fξ(θ, ε) | ξ)
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>
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

⋃

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%
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(θ, ε)

ρ(fξ(θ, ε) | ξ)
− 1

∣∣∣∣∣∣
>

1

2



 .

Then we have

E[‖∆ψξ,`‖22] = E[‖∆ψξ,`‖221A] + E[‖∆ψξ,`‖221Ac ],(A.1)

where 1• denotes the indicator function of an event • and Ac denotes the complement
of the event A.

Let us look at the first term on the right-hand side of (A.1). Since we use the
same i.i.d. samples of θ′ ∼ q in the denominator and numerator for the three terms

of ∆ψξ,`, i.e., ψξ,M02`,q, ψ
(a)

ξ,M02`−1,q
, ψ

(b)

ξ,M02`−1,q
, it follows from the assumption

sup
θ,θ′,ε

‖∇ξ log ρ(fξ(θ, ε) | θ′, ξ)‖∞ =: %max <∞
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2
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∥∥∥
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2
≤ 2d%2

max where d denotes the car-

dinality of ξ. Applying Jensen’s inequality leads to a bound
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Thus we have

E[‖∆ψξ,`‖221A] ≤ 8d%2
maxE[1A] = 8d%2

maxP[A].

Noting that both %
(a)

ξ,M02`−1,q
(θ, ε) and %

(b)

ξ,M02`−1,q
(θ, ε) are unbiased estimates of the

target quantity ρ(fξ(θ, ε) | ξ) using M02`−1 random samples of θ′ ∼ q, it follows from
the assumption of the theorem and Lemma A.1 that

P[A] ≤ P
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(M02`−1)u/2

Eθ,θ′,ε
[∣∣∣∣
ρ(fξ(θ, ε) | θ′, ξ)π0(θ′)
ρ(fξ(θ, ε) | ξ)q(θ′)

− 1

∣∣∣∣
u]

≤ 2u+1Cu
(M02`−1)u/2

(
Eθ,θ′,ε

[∣∣∣∣
ρ(fξ(θ, ε) | θ′, ξ)π0(θ′)
ρ(fξ(θ, ε) | ξ)q(θ′)

∣∣∣∣
u]

+ 1
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This gives a bound on the term E[‖∆ψξ,`‖221A] of order 2−(u/2)`.
Next let us look at the second term on the right-hand side of (A.1). By using the

antithetic properties (3.5), we have
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The same bound exists also for %ξ,M02`,q(θ, ε) because of the antithetic property (3.5).
By applying Jensen’s inequality and then using these bounds, we obtain
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(A.2)

Let us focus on the third term of (A.2). Applying Hölder’s inequality gives
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Using Jensen’s inequality and Lemma A.1, the first factor above is bounded by
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(M02`)min(u,4)/2

× Eθ,θ′,ε

[∥∥∥∥
∇ξρ(fξ(θ, ε) | θ′, ξ)π0(θ′)/q(θ′)
ρ(fξ(θ, ε) | θ′, ξ)π0(θ′)/q(θ′)

· ρ(fξ(θ, ε) | θ′, ξ)π0(θ′)/q(θ′)
ρ(fξ(θ, ε) | ξ)

∥∥∥∥
min(u,4)

min(u,4)

+

∥∥∥∥
∇ξρ(fξ(θ, ε) | ξ)
ρ(fξ(θ, ε) | ξ)

∥∥∥∥
min(u,4)

min(u,4)

]

≤ 2min(u,4)−1dmin(u,4)/2%
min(u,4)
max Cmin(u,4)

(M02`)min(u,4)/2

×
(
Eθ,θ′,ε

[∣∣∣∣
ρ(fξ(θ, ε) | θ′, ξ)π0(θ′)
ρ(fξ(θ, ε) | ξ)q(θ′)

∣∣∣∣
min(u,4)

]
+ 1

)
,

whereas a bound on the second factor directly follows from Lemma A.1, i.e., we have

E

[∣∣∣∣
%ξ,M02`,q(θ, ε)

ρ(fξ(θ, ε) | ξ)
− 1

∣∣∣∣
min(u,4)

]

≤ Cmin(u,4)

(M02`)min(u,4)/2
Eθ,θ′,ε

[∣∣∣∣
ρ(fξ(θ, ε) | θ′, ξ)π0(θ′)
ρ(fξ(θ, ε) | ξ)q(θ′)

− 1

∣∣∣∣
min(u,4)

]

≤ Cmin(u,4)

(M02`)min(u,4)/2

(
Eθ,θ′,ε

[∣∣∣∣
ρ(fξ(θ, ε) | θ′, ξ)π0(θ′)
ρ(fξ(θ, ε) | ξ)q(θ′)

∣∣∣∣
min(u,4)

]
+ 1

)
.

Substituting these bounds shows that the third term is of order
(

2−min(u,4)`/2
)2/min(u,4)

·
(

2−min(u,4)`/2
)1−2/min(u,4)

= 2−min(u,4)`/2

for given u > 2.
Similarly, the expectation of the sixth term of (A.2) can be bounded above by

E

[∥∥∥∥
∇ξρ(fξ(θ, ε) | ξ)
ρ(fξ(θ, ε) | ξ)

∥∥∥∥
2

2

(
%ξ,M02`,q(θ, ε)

ρ(fξ(θ, ε) | ξ)
− 1

)4

1Ac

]
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≤ 2max(4−u,0)E

[∥∥∥∥
∇ξρ(fξ(θ, ε) | ξ)
ρ(fξ(θ, ε) | ξ)

∥∥∥∥
2

2

∣∣∣∣
%ξ,M02`,q(θ, ε)

ρ(fξ(θ, ε) | ξ)
− 1

∣∣∣∣
min(u,4)

]

≤ 2max(4−u,0)d%2
maxE

[∣∣∣∣
%ξ,M02`,q(θ, ε)

ρ(fξ(θ, ε) | ξ)
− 1

∣∣∣∣
min(u,4)

]

≤ 2max(4−u,0)d%2
maxCmin(u,4)

(M02`)min(u,4)/2

(
Eθ,θ′,ε

[∣∣∣∣
ρ(fξ(θ, ε) | θ′, ξ)π0(θ′)
ρ(fξ(θ, ε) | ξ)q(θ′)

∣∣∣∣
min(u,4)

]
+ 1

)
.

It is obvious that the other terms of (A.2) can be bounded similarly. This way we
obtain a bound on the term E[‖∆ψξ,`‖221Ac ] of order 2−min(u,4)`/2, which completes
the proof of the first assertion of the theorem.

Let us move on to the second assertion. By choosing w` ∝ 2−τ`, it follows from
the first assertion that

∞∑

`=0

E[‖∆ψξ,`‖22]

w`
∝
∞∑

`=0

2−(β−τ)`,

and

∞∑

`=0

C`w` ∝
∞∑

`=0

2−(τ−1)`.

Thus, if 1 < τ < β, these two quantities are obviously bounded. It is important to
remark that we have these finite bounds on the expected squared `2-norm and the
expected computational cost of the random variable ∆ψξ,`/w`, since we assume u > 2,
which ensures β > 1.
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Abstract
We introduce Deep Adaptive Design (DAD),
a method for amortizing the cost of adaptive
Bayesian experimental design that allows exper-
iments to be run in real-time. Traditional se-
quential Bayesian optimal experimental design ap-
proaches require substantial computation at each
stage of the experiment. This makes them un-
suitable for most real-world applications, where
decisions must typically be made quickly. DAD
addresses this restriction by learning an amor-
tized design network upfront and then using this
to rapidly run (multiple) adaptive experiments
at deployment time. This network represents a
design policy which takes as input the data from
previous steps, and outputs the next design using a
single forward pass; these design decisions can be
made in milliseconds during the live experiment.
To train the network, we introduce contrastive in-
formation bounds that are suitable objectives for
the sequential setting, and propose a customized
network architecture that exploits key symmetries.
We demonstrate that DAD successfully amortizes
the process of experimental design, outperforming
alternative strategies on a number of problems.

1. Introduction
A key challenge across disciplines as diverse as psychology
(Myung et al., 2013), bioinformatics (Vanlier et al., 2012),
pharmacology (Lyu et al., 2019) and physics (Dushenko
et al., 2020) is to design experiments so that the outcomes
will be as informative as possible about the underlying pro-
cess. Bayesian optimal experimental design (BOED) is a
powerful mathematical framework for tackling this prob-
lem (Lindley, 1956; Chaloner & Verdinelli, 1995).

In the BOED framework, outcomes y are modeled in a
Bayesian manner (Gelman et al., 2013; Kruschke, 2014)

*Equal contribution 1Department of Statistics, University of
Oxford, UK 2Work undertaken whilst at the University of Oxford.
Correspondence to: Adam Foster <adam.foster@stats.ox.ac.uk>.

Proceedings of the 38 th International Conference on Machine
Learning, PMLR 139, 2021. Copyright 2021 by the author(s).

using a likelihood p(y|θ, ξ) and a prior p(θ), where ξ is
our controllable design and θ is the set of parameters we
wish to learn about. We then optimize ξ to maximize the ex-
pected information gained about θ (equivalently the mutual
information between y and θ):

I(ξ) := Ep(θ)p(y|θ,ξ) [log p(y|θ, ξ)− log p(y|ξ)] . (1)

The true power of BOED is realized when it is used to design
a sequence of experiments ξ1, ..., ξT , wherein it allows us
to construct adaptive strategies which utilize information
gathered from past data to tailor each successive design ξt
during the progress of the experiment. The conventional,
iterative, approach for selecting each ξt is to fit the posterior
p(θ|ξ1:t−1, y1:t−1) representing the updated beliefs about θ
after t−1 iterations have been conducted, and then substitute
this for the prior in (1) (Ryan et al., 2016; Rainforth, 2017;
Kleinegesse et al., 2020). The design ξt is then chosen as
the one which maximizes the resulting objective.

Unfortunately, this approach necessitates significant com-
putational time to be expended between each step of the
experiment in order to update the posterior and compute the
next optimal design. In particular, I(ξ) is doubly intractable
(Rainforth et al., 2018; Zheng et al., 2018) and its optimiza-
tion constitutes a significant computational bottleneck. This
can be prohibitive to the practical application of sequential
BOED as design decisions usually need to be made quickly
for the approach to be useful (Evans & Mathur, 2005).

To give a concrete example, consider running an adaptive
survey to understand political opinions (Pasek & Krosnick,
2010). A question ξt is put to a participant who gives their
answer yt and this data is used to update an underlying
model with latent variables θ. Here sequential BOED is of
immense value because previous answers can be used to
guide future questions, ensuring that they are pertinent to
the particular participant. However, it is not acceptable to
have lengthy delays between questions to compute the next
design, precluding existing approaches from being used.

To alleviate this problem, we propose amortizing the cost of
sequential experimental design, performing upfront training
before the start of the experiment to allow very fast design
decisions at deployment, when time is at a premium. This
amortization is particularly useful in the common scenario
where the same adaptive experimental framework will be
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deployed numerous times (e.g. having multiple participants
in a survey). Here amortization not only removes the com-
putational burden from the live experiment, it also allows
for sharing computation across multiple experiments, analo-
gous to inference amortization that allows one to deal with
multiple datasets (Stuhlmüller et al., 2013).

Our approach, called Deep Adaptive Design (DAD), con-
structs a single design network which takes as input the
designs and observations from previous stages, and outputs
the design to use for the next experiment. The network is
learned by simulating hypothetical experimental trajectories
and then using these to train the network to make near-
optimal design decisions automatically. That is, it learns a
design policy which makes decisions as a function of the
past data, and we optimize the parameters of this policy
rather than an individual design. Once learned, the network
eliminates the computational bottleneck at each iteration of
the experiment, enabling it to be run both adaptively and
quickly; it can also be used repeatedly for different instanti-
ations of the experiment (e.g. different human participants).

To allow for efficient, effective, and simple training, we
show how DAD networks can be learned without any direct
posterior or marginal likelihood estimation. This is achieved
by reformulating the sequential BOED problem from its
conventional iterative form, to a single holistic objective
based on the overall expected information gained from the
entire experiment when using a policy to make each design
decision deterministically given previous design outcome
pairs. We then derive contrastive bounds on this objective
that allow for end-to-end training of the policy parameters
with stochastic gradient ascent, thereby sidestepping both
the need for inference and the double intractability of the
EIG objective. This approach has the further substantial
benefit of allowing non-myopic adaptive strategies to be
learned, that is strategies which take account of their own
future decisions, unlike conventional approaches.

We further demonstrate a key permutation symmetry prop-
erty of the optimal design policy, and use this to propose
a customized architecture for the experimental design net-
work. This is critical to allowing effective amortization
across time steps. The overall result of the theoretical for-
mulation, novel contrastive bounds, and neural architecture
is a methodology which enables us to bring the power of
deep learning to bear on adaptive experimental design.

We apply DAD to a range of problems relevant to applica-
tions such as epidemiology, physics and psychology. We
find that DAD is able to accurately amortize experiments,
opening the door to running adaptive BOED in real time.

2. Background
Because experimentation is a potentially costly endeavour, it
is essential to design experiments in manner that maximizes

the amount of information garnered. The BOED framework,
pioneered by Lindley (1956), provides a powerful means of
doing this in a principled manner. Its key idea is to optimize
the experimental design ξ to maximize the expected amount
of information that will be gained about the latent variables
of interest, θ, upon observing the experiment outcome y.

To implement this approach, we begin with the standard
Bayesian modelling set-up consisting of an explicit likeli-
hood model p(y|θ, ξ) for the experiment, and a prior p(θ)
representing our initial beliefs about the unknown latent.
After running a hypothetical experiment with design ξ and
observing y, our updated beliefs are the posterior p(θ|ξ, y).
The amount of information that has been gained about θ
can be mathematically described by the reduction in entropy
from the prior to the posterior

IG(ξ, y) = H [p(θ)]− H [p(θ|ξ, y)] . (2)

The expected information gain (EIG) is formed by taking
the expectation over possible outcomes y, using the model
itself to simulate these. Namely we take an expectation with
respect to y ∼ p(y|ξ) = Ep(θ)[p(y|θ, ξ)], yielding

I(ξ) :=Ep(y|ξ) [IG(ξ, y)]

=Ep(θ)p(y|θ,ξ) [log p(θ|ξ, y)− log p(θ)]

=Ep(θ)p(y|θ,ξ) [log p(y|θ, ξ)− log p(y|ξ)]

which is the mutual information between y and θ un-
der design ξ. The optimal design is defined as ξ∗ =
arg maxξ∈Ξ I(ξ), where Ξ is the space of feasible designs.

It is common in BOED settings to be able to run multiple
experiment iterations with designs ξ1, ..., ξT , observing re-
spective outcomes y1, ..., yT . One simple strategy for this
case is static design, also called fixed or batch design, which
selects all ξ1, ..., ξT before making any observation. The de-
signs are optimized to maximize the EIG, with y1:T in place
of y and ξ1:T in place of ξ, effectively treating the whole
sequence of experiments as one experiment with enlarged
observation and design spaces.

2.1. Conventional adaptive BOED

This static design approach is generally sub-optimal as it
ignores the fact that information from previous iterations can
substantially aid in the design decisions at future iterations.
The power of the BOED framework can thus be significantly
increased by using an adaptive design strategy that chooses
each ξt dependent upon ξ1:t−1, y1:t−1. This enables us to
use what has already been learned in previous experiments
to design the next one optimally, resulting in a virtuous cycle
of refining beliefs and using our updated beliefs to design
good experiments for future iterations.

The conventional approach to computing designs adaptively
is to fit the posterior distribution p(θ|ξ1:t−1, y1:t−1) at each
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step, and then optimize the EIG objective that uses this
posterior in place of the prior (Ryan et al., 2016)

I(ξt) = Ep(θ|ξ1:t−1,y1:t−1)p(yt|θ,ξt)

[
log

p(yt|θ, ξt)
p(yt|ξt)

]
(3)

where p(yt|ξt) = Ep(θ|ξ1:t−1,y1:t−1)[p(yt|θ, ξt)].
Despite the great potential of the adaptive BOED frame-
work, this conventional approach is very computationally
expensive. At each stage t of the experiment we must com-
pute the posterior p(θ|ξ1:t−1, y1:t−1), which is costly and
cannot be done in advance as it depends on y1:t−1. Further-
more, the posterior is then used to obtain ξt by maximizing
the objective in (3), which is computationally even more
demanding as it involves the optimization of a doubly in-
tractable quantity (Rainforth et al., 2018; Foster et al., 2019).
Both of these steps must be done during the experiment,
meaning it is infeasible to run adaptive BOED in real time
experiment settings unless the model is unusually simple.

2.2. Contrastive information bounds

In Foster et al. (2020), the authors noted that if ξ ∈ Ξ is con-
tinuous, approximate optimization of the EIG at each stage
of the experiment can be achieved in a single unified stochas-
tic gradient procedure that both estimates and optimizes the
EIG simultaneously. A key component of this approach is
the derivation of several contrastive lower bounds on the
EIG, inspired by work in representation learning (van den
Oord et al., 2018; Poole et al., 2019). One such bound is the
Prior Contrastive Estimation (PCE) bound, given by

I(ξ) ≥ E

[
log

p(y|θ0, ξ)
1

L+1

∑L
`=0 p(y|θ`, ξ)

]
(4)

where θ0 ∼ p(θ) is the sample used to generate y ∼
p(y|θ, ξ) and θ1:L are L contrastive samples drawn inde-
pendently from p(θ); as L→∞ the bound becomes tight.
The PCE bound can be maximized by stochastic gradient
ascent (SGA) (Robbins & Monro, 1951) to approximate the
optimal design ξ. As discussed previously, in a sequential
setting this stochastic gradient optimization is repeated T
times, with p(θ) replaced by p(θ|ξ1,t−1, y1:t−1) at step t.

3. Rethinking Sequential BOED
To enable adaptive BOED to be deployed in settings where
design decisions must be taken quickly, we first need to
rethink the traditional iterative approach to produce a formu-
lation which considers the entire design process holistically.
To this end, we introduce the concept of a design function,
or policy, π that maps from the set of all previous design–
observation pairs to the next chosen design.

Let ht denote the experimental history (ξ1, y1), ..., (ξt, yt).
We can simulate histories for a given policy π, by sampling

a θ ∼ p(θ), then, for each t = 1, ..., T , fixing ξt = π(ht−1)
(where h0 = ∅) and sampling yt ∼ p(y|θ, ξt). The density
of this generative process can be written as

p(θ)p(hT |θ, π) = p(θ)
∏T

t=1
p(yt|θ, ξt). (5)

The standard sequential BOED approach described in § 2.1
now corresponds to a costly implicit policy πs, that per-
forms posterior estimation followed by EIG optimization to
choose each design. By contrast, in DAD, we will learn a
deterministic π that chooses designs directly.

Another way to think about πs is that it is the policy which
piecewise optimizes the following objective for ξt|ht−1

Iht−1(ξt) := Ep(θ|ht−1)p(yt|θ,ξt)

[
log

p(yt|θ, ξt)
p(yt|ht−1, ξt)

]
(6)

where p(yt|ht−1, ξt) = Ep(θ|ht−1)[p(yt|θ, ξt)]. It is thus
the optimal myopic policy—that is a policy which fails to
reason about its own future actions—for an objective given
by the sum of EIGs from each experiment iteration. Note
that this is not the optimal overall policy as it fails to account
for future decision making: some designs may allow better
future design decisions than others than others (González
et al., 2016; Jiang et al., 2020).1

Trying to learn an efficient policy that directly mimics πs
would be very computationally challenging because of the
difficulties of dealing with both inference and EIG estima-
tion at each iteration of the training. Indeed, the natural way
to do this involves running a full, very expensive, simulated
sequential BOED process to generate each training example.

We instead propose a novel strategy that reformulates the
sequential decision problem in a way that completely elimi-
nates the need for calculating either posterior distributions
or intermediate EIGs, while also allowing for non-myopic
policies to be learned. This is done by exploiting an im-
portant property of the EIG: the total EIG of a sequential
experiment is the sum of the (conditional) EIGs for each ex-
periment iteration. This is formalized in the following result,
which provides a single expression for the expected infor-
mation gained from the entire sequence of T experiments.

Theorem 1. The total expected information gain for policy
π over a sequence of T experiments is

IT (π) := Ep(θ)p(hT |θ,π)

[∑T

t=1
Iht−1

(ξt)

]
(7)

=Ep(θ)p(hT |θ,π) [log p(hT |θ, π)− log p(hT |π)] (8)

where p(hT |π) = Ep(θ)[p(hT |θ, π)].

1To give an intuitive example, consider the problem of placing
two breakpoints on the line [0, 1] to produce the most evenly sized
segments. The optimal myopic policy places its first design at 1/2
and its second at either 1/4 or 3/4. This is suboptimal since the
best strategy is to place the two breakpoints at 1/3 and 2/3.
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The proof is given in Appendix A. Intuitively, IT (π) is the
expected reduction in entropy from the prior p(θ) to the fi-
nal posterior p(θ|hT ), without considering the intermediate
posteriors at all. Note here a critical change from previous
BOED formulations: IT (π) is a function of the policy, not
the designs themselves, with the latter now being random
variables (due to their dependence on previous outcomes)
that we take an expectation over. This is actually a strict
generalization of conventional BOED frameworks: static
design corresponds to policy that consists of T fixed designs
with no adaptivity, for which (8) coincides with I(ξ1:T ),
while conventional adaptive BOED approximates πs.

By reformulating our objective in terms of a policy, we have
constructed a single end-to-end objective for adaptive, non-
myopic design and which requires negligible computation
at deployment time: once π is learned, it can just be directly
evaluated during the experiment itself.

4. Deep Adaptive Design
Theorem 1 showed that the optimal design function π∗ =
arg maxπ IT (π) is the one which maximizes the mutual in-
formation between the unknown latent θ and the full rollout
of histories produced using that policy, hT . DAD looks to
approximate π∗ explicitly using a neural network, which
we now refer to as the design network πφ, with trainable
parameters φ. This policy-based approach marks a major
break from existing methods, which do not represent de-
sign decisions explicitly as a function, but instead optimize
designs on the fly during the experiment.

DAD amortizes the cost of experimental design—by train-
ing the network parameters φ, the design network is taught
to make correct design decisions across a wide range of
possible experimental outcomes. This removes the cost of
adaptation for the live experiment itself: during deployment
the design network will select the next design nearly in-
stantaneously with a single forward pass of the network.
Further, it offers a simplification and streamlining of the
sequential BOED process: it only requires the upfront end-
to-end training of a single neural network and thus negates
the need to set up complex automated inference and opti-
mization schemes that would otherwise have to run in the
background during a live experiment. A high-level summary
of the DAD approach is given in Algorithm 1.

Two key technical challenges still stand in the way of re-
alizing the potential of adaptive BOED in real time. First,
whilst the unified objective IT (π) does not require the com-
putation of intermediate posterior distributions, it remains
an intractable objective due to the presence of p(hT |π). To
deal with this, we derive a family of lower bounds that are
appropriate for the policy-based setting and use them to con-
struct stochastic gradient training schemes for φ. Second,
to ensure that this network can efficiently learn a mapping

Algorithm 1 Deep Adaptive Design (DAD)
Input: Prior p(θ), likelihood p(y|θ, ξ), number of steps T
Output: Design network πφ
while training compute budget not exceeded do

Sample θ0 ∼ p(θ) and set h0 = ∅
for t = 1, ..., T do

Compute ξt = πφ(ht−1)
Sample yt ∼ p(y|θ0, ξt)
Set ht = {(ξ1, y1), ..., (ξt, yt)}

end
Compute estimate for dLT /dφ as per § 4.2
Update φ using stochastic gradient ascent scheme

end
At deployment, πφ is fixed, we take ξt = πφ(ht−1), and

each yt is obtained by running an experiment with ξt.

from histories to designs, we require an effective architec-
ture. As we show later, the optimal policy is invariant to
the order of the history, and we use this key symmetry to
architect an effective design network.

4.1. Contrastive bounds for sequential experiments

Our high-level aim is to train πφ to maximize the mutual
information IT (πφ). In contrast to most machine learn-
ing tasks, this objective is doubly intractable and cannot
be directly evaluated or even estimated with a conventional
Monte Carlo estimator, except in very special cases (Rain-
forth et al., 2018). In fact, it is extremely challenging and
costly to derive any unbiased estimate for it or its gradi-
ents. To train πφ with stochastic gradient methods, we will
therefore introduce and optimize lower bounds on IT (πφ),
building on the ideas of § 2.2.

Equation (8) shows that the objective function is the ex-
pected logarithm of a ratio of two terms. The first is the like-
lihood of the history, p(hT |θ, π), and can be directly evalu-
ated using (5). The second term is an intractable marginal
p(hT |π) that is different for each sample of the outer expec-
tation and must thus be estimated separately each time.

Given a sample θ0, hT ∼ p(θ, hT |π), we can perform this
estimation by introducing L independent contrastive sam-
ples θ1:L ∼ p(θ). We can then approximate the log-ratio in
two different ways, depending on whether or not we include
θ0 in our estimate for p(hT |π):

gL(θ0:L, hT ) = log
p(hT |θ0, π)

1
L+1

∑L
`=0 p(hT |θ`, π)

(9)

fL(θ0:L, hT ) = log
p(hT |θ0, π)

1
L

∑L
`=1 p(hT |θ`, π)

. (10)

These functions can both be evaluated by recomputing the
likelihood of the history under each of the contrastive sam-
ples θ1:L. We note that g cannot exceed log(L+1), whereas
f is potentially unbounded (see Appendix A for a proof).
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We now show that using g to approximate the integrand
leads to a lower bound on the overall objective IT (π), whilst
using f leads to an upper bound. During training, we focus
on the lower bound, because it does not lead to unbounded
ratio estimates and is therefore more numerically stable. We
refer to this new lower bound as sequential PCE (sPCE).
Theorem 2 (Sequential PCE). For a design function π and
a number of contrastive samples L ≥ 0, let

LT (π, L) = Ep(θ0,hT |π)p(θ1:L) [gL(θ0:L, hT )] (11)

where gL(θ0:L, hT ) is as per (9), and θ0, hT ∼ p(θ, hT |π),
and θ1:L ∼ p(θ) independently. Given minor technical
assumptions discussed in the proof, we have2

LT (π, L) ↑ IT (π) as L→∞ (12)

at a rate O
(
L−1

)
.

The proof is presented in Appendix A. For evaluation pur-
poses, it is helpful to pair sPCE with an upper bound, which
we obtain by using f as our estimate of the integrand

UT (π, L) = Ep(θ0,hT |π)p(θ1:L) [fL(θ0:L, hT )] . (13)

We refer to this bound as sequential Nested Monte Carlo
(sNMC). Theorem 4 in Appendix A shows that UT (π, L) sat-
isfies complementary properties to LT (π, L). In particular,
LT (π, L) ≤ IT (π) ≤ UT (π, L) and both bounds become
monotonically tighter as L increases, becoming exact as
L → ∞ at a rate O (1/L). We can thus directly control
the trade-off between bias in our objective and the computa-
tional cost of training. Note that increasing L has no impact
on the cost at deployment time. Critically, as we will see
in our experiments, we tend to only need relatively modest
values of L for LT (π, L) to be an effective objective.

If using a sufficiently large L proves problematic (e.g. our
available training time is strictly limited), one can further
tighten these bounds for a fixed L by introducing an amor-
tized proposal, q(θ;hT ), for the contrastive samples θ1:L,
rather than drawing them from the prior, as in Foster et al.
(2020). By appropriately adapting LT (π, L), the proposal
and the design network can then be trained simultaneously
with a single unified objective, in a manner similar to a vari-
ational autoencoder (Kingma & Welling, 2014), allowing
the bound itself to get tighter during training. The result-
ing more general class of bounds are described in detail in
Appendix B and may offer further improvements for the
DAD approach. We focus on training with sPCE here in the
interest of simplicity of both exposition and implementation.

4.2. Gradient estimation

The design network parameters φ can be optimized using a
stochastic optimization scheme such as Adam (Kingma &

2xL ↑ x means that xL is a monotonically increasing sequence
in L with limit x.

Ba, 2014). Such methods require us to compute unbiased
gradient estimates of the sPCE objective (11). Throughout,
we assume that the design space Ξ is continuous.

We first consider the case when the observation space Y is
also continuous and the likelihood p(y|θ, ξ) is reparametriz-
able. This means that we can introduce random variables
ε1:T ∼ p(ε), which are independent of ξ1:T and θ0:L,
such that yt = y(θ0, ξt, εt). As we already have that
ξt = πφ(ht−1), we see that ht becomes a deterministic
function of ht−1 given εt and θ0. Under these assumptions
we can take the gradient operator inside the expectation and
apply the law of the unconscious statistician to write3

dLT
dφ

= Ep(θ0:L)p(ε1:T )

[
d

dφ
gL(θ0:L, hT )

]
. (14)

We can now construct unbiased gradient estimates
by sampling from p(θ0:L)p(ε1:T ) and evaluating,
dgL(θ0:L, hT )/dφ. This gradient can be easily com-
puted via an automatic differentiation framework (Baydin
et al., 2018; Paszke et al., 2019).

For the case of discrete observations y ∈ Y , first note that
given a policy πφ, the only randomness in the history hT
comes from the observations y1, . . . , yT , since the designs
are computed deterministically from past histories. One
approach to computing the gradient of (11) in this case is
to sum over all possible histories hT , integrating out the
variables y1:T , and take gradients with respect to φ to give

dLT
dφ

= E

[∑

hT

d

dφ

(
p(hT |θ0)gL(θ0:L, hT )

)]
, (15)

where the expectation is over θ0:L ∼ p(θ). Unbiased gradi-
ent estimates can be computed using samples from the prior.
Unfortunately, this gradient estimator has a computational
cost O(|Y|T ) and is therefore only applicable when both
the number of experiments T and the number of possible
outcomes |Y| are relatively small.

To deal with the cases when it is either impractical to enu-
merate all possible histories, or Y is continuous but the
likelihood p(hT |θ, πφ) is non-reparametrizable, we propose
using the score function gradient estimator, which is also
known as the REINFORCE estimator (Williams, 1992). The
score function gradient, is given by

dLT
dφ

=E

[(
log

p(hT |θ0, πφ)
∑L
`=0 p(hT |θ`, πφ)

)
d

dφ
log p(hT |θ0, πφ)

− d

dφ
log

L∑

`=0

p(hT |θ`, πφ)

]
(16)

3We use ∂a/∂b and da/db to represent the Jacobian matrices
of partial and total derivatives respectively for vectors a and b.
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where the expectation is over θ0, hT ∼ p(θ, hT |π) and
θ1:L ∼ p(θ), and unbiased estimates may again be obtained
using samples. This gradient is amenable to the wide range
of existing variance reduction methods such as control vari-
ates (Tucker et al., 2017; Mohamed et al., 2020). In our
experiments, however, we found the standard score function
gradient to be sufficiently low variance. For complete deriva-
tions of the gradients estimators we use, see Appendix C.

4.3. Architecture

Finally, we discuss the deep learning architecture used for
πφ. To allow efficient and effective training, we take into ac-
count a key permutation invariance of the BOED problem as
highlighted by the following result (proved in Appendix A).

Theorem 3 (Permutation invariance). Consider a permu-
tation σ ∈ Sk acting on a history h1

k, yielding h2
k =

(ξσ(1), yσ(1)), ..., (ξσ(k), yσ(k)). For all such σ, we have

E

[
T∑

t=1

Iht−1
(ξt)

∣∣∣∣∣hk = h1
k

]
= E

[
T∑

t=1

Iht−1
(ξt)

∣∣∣∣∣hk = h2
k

]

such that the EIG is unchanged under permutation. Further,
the optimal policies starting in h1

k and h2
k are the same.

This permutation invariance is an important and well-studied
property of many machine learning problems (Bloem-Reddy
& Teh, 2019). The knowledge that a system exhibits per-
mutation invariance can be exploited in neural architecture
design to enable significant weight sharing. One common
approach is pooling (Edwards & Storkey, 2016; Zaheer et al.,
2017; Garnelo et al., 2018a;b). This involves summing or
otherwise combining representations of multiple inputs into
a single representation that is invariant to their order.

Using this idea, we represent the history ht with a fixed
dimensional representation that is formed by pooling repre-
sentations of the distinct design-outcome pairs of the history

R(ht) :=
∑t

k=1
Eφ1(ξk, yk), (17)

where Eφ1
is a neural network encoder with parameters φ1

to be learned. Note that this pooled representation is the
same if we reorder the labels 1, ..., t. By convention, the
sum of an empty sequence is 0.

We then construct our design network to make deci-
sions based on the pooled representation R(ht) by setting
πφ(ht) = Fφ2(R(ht)), where Fφ2 is a learned emitter net-
work. The trainable parameters are φ = {φ1, φ2}. By
combining simple networks in a way that is sensitive to the
permutation invariance of the problem, we facilitate param-
eter sharing in which the network Eφ1

is re-used for each
input pair and for each time step t. This results in signif-
icantly improved performance compared to networks that
are forced to learn the relevant symmetries of the problem.

(a) DAD (b) Fixed
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Figure 1. An example of the designs learnt by (a) the DAD network
and (b) the fixed baseline for a given θ sampled from the prior.

5. Related Work
Existing approaches to sequential BOED typically follow
the path outlined in § 2.1. The posterior inference per-
formed at each stage of the conventional approach has been
done using sequential Monte Carlo (Del Moral et al., 2006;
Drovandi et al., 2014), population Monte Carlo (Rainforth,
2017), variational inference (Foster et al., 2019; 2020), and
Laplace approximation (Lewi et al., 2009; Long et al., 2013).

The estimation of the mutual information objective at each
step has been performed by nested Monte Carlo (Myung
et al., 2013; Vincent & Rainforth, 2017), variational bounds
(Foster et al., 2019; 2020), Laplace approximation (Lewi
et al., 2009), ratio estimation (Kleinegesse et al., 2020), and
hybrid methods (Senarathne et al., 2020). The optimization
over designs has been performed by Bayesian optimization
(Foster et al., 2019; Kleinegesse et al., 2020), interacting
particle systems (Amzal et al., 2006), simulated annealing
(Müller, 2005), utilizing regret bounds (Zheng et al., 2020),
or bandit methods (Rainforth, 2017).

There are approaches that simultaneously estimate the mu-
tual information and optimize it, using a single stochastic
gradient procedure. Examples include perturbation analysis
(Huan & Marzouk, 2014), variational lower bounds (Foster
et al., 2020), or multi-level Monte Carlo (Goda et al., 2020).

Some recent work has focused specifically on models with
intractable likelihoods (Hainy et al., 2016; Kleinegesse &
Gutmann, 2020; Kleinegesse et al., 2020). Other work has
sought to learn a non-myopic strategy focusing on specific
tractable cases (Huan & Marzouk, 2016; Jiang et al., 2020).

6. Experiments
We now compare DAD to a number of baselines across a
range of experimental design problems. We implement
DAD by extending PyTorch (Paszke et al., 2019) and
Pyro (Bingham et al., 2018) to provide an implementation
that is abstracted from the specific problem. Code is publicly
available at https://github.com/ae-foster/dad.

146



Deep Adaptive Design: Amortizing Sequential Bayesian Experimental Design

Method Lower bound, L30 Upper bound, U30

Random 8.303 ± 0.043 8.322 ± 0.045
Fixed 8.838 ± 0.039 8.914 ± 0.038
DAD 10.926 ± 0.036 12.382 ± 0.095
Variational 8.776 ± 0.143 9.064 ± 0.187

Table 1. Upper and lower bounds on the total EIG, I30(π), for the
location finding experiment. Errors indicate±1 s.e. estimated over
256 (variational) or 2048 (others) rollouts.

As our aim is to adapt designs in real-time, we primarily
compare to strategies that are fast at deployment time. The
simplest baseline is random design, which selects designs
uniformly at random. The fixed baseline completely ignores
the opportunity for adaptation and uses static design to learn
a fixed ξ1, ..., ξT before the experiment. We use the SG-
BOED approach of Foster et al. (2020) with the PCE bound
to optimize the fixed design ξ1:T . We also compare to tailor-
made heuristics for particular models as appropriate.

Similarly to the notion of the amortization gap in amortized
inference (Cremer et al., 2018), one might initially expect
to a drop in performance of DAD compared to conventional
(non-amortized) BOED methods that use the traditional iter-
ative approach of § 2.1. To assess this we also consider using
the SG-BOED approach of Foster et al. (2020) in a tradi-
tional iterative manner to approximate πs, referring to this as
the variational baseline, noting this requires significant run-
time computation. We also look at several iterative BOED
baselines that are specifically tailored to the examples that
we choose (Vincent & Rainforth, 2017; Kleinegesse et al.,
2020). Perhaps surprisingly, we find that DAD is not only
competitive compared to these non-amortized methods, but
often outperforms them. This is discussed in § 7.

The first performance metric that we focus on is total EIG,
IT (π). When no direct estimate of IT (π) is available,
we estimate both the sPCE lower bound and sNMC up-
per bound. We also present the standard error to indicate
how the performance varies between different experiment
realizations (rollouts). We further consider the deployment
time (i.e. the time to run the experiment itself, after pre-
training); a critical metric for our aims. Full experiment
details are given in Appendix D.

6.1. Location finding in 2D

Inspired by the acoustic energy attenuation model of Sheng
& Hu (2005), we consider the problem of finding the loca-
tions of multiple hidden sources which each emits a signal
whose intensity attenuates according to the inverse-square
law. The total intensity is a superposition of these signals.
The design problem is to choose where to make observations
of the total signal to learn the locations of the sources.

We train a DAD network to perform T = 30 experiments
with K = 2 sources. The designs learned by DAD are
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Figure 2. Generalizing sequence length for the location finding
experiment. The DAD network and the fixed strategy were trained
to perform T = 30 experiments, whilst other strategies do not
require pre-training. The fixed strategy cannot be generalized
to sequences longer than its training regime. We present sPCE
estimates with error bars computed as in Table 1.

visualized in Figure 1(a). Here our network learns a complex
strategy that initially explores in a spiral pattern. Once it
detects a strong signal, multiple experiments are performed
close together to refine knowledge of that location (note
the high density of evaluations near the sources). The fixed
design strategy, displayed in Figure 1(b) must choose all
design locations up front, leading to an evenly dispersed
strategy that cannot “hone in” on the critical areas, thus
gathering less information.

Table 1 reports upper and lower bounds on IT (π) for each
strategy and confirms that DAD significantly outperforms
all the considered baselines. DAD is also orders of mag-
nitude faster to deploy than the variational baseline, the
other adaptive method, with DAD taking 0.0474± 0.0003
secs to make all 30 design decisions on a lightweight CPU,
compared to 8963 secs for the variational method.

Varying the Design Horizon In practical situations the
exact number of experiments to perform may be unknown.
Figure 2 indicates that our DAD network that is pretrained
to perform T = 30 experiments can generalize well to
perform T ′ 6= 30 experiments at deployment time, still
outperforming the baselines, indicating that DAD is robust
to the length of training sequences.

Training Stability To assess the stability between differ-
ent training runs, we trained 16 different DAD networks.
Computing the mean and standard error of the lower bound
on IT (π) over these 16 runs gave 10.91 ± 0.014, and the
matching upper bounds were 12.47±0.046. We see that the
variance across different training seeds is modest, indicating
that DAD reaches designs of a similar quality each time.
Comparing with Table 1, we see that the natural variability
across rollouts (i.e. different θ) with a single DAD network
tends to be larger than the variance between the average
performance of different DAD networks.
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Method Deployment time (s)
Frye et al. (2016) 0.0902 ± 0.0003
Kirby (2009) N/A
Fixed N/A
DAD 0.0901 ± 0.0007
Badapted 25.2679 ± 0.1854

Table 2. Deployment times for Hyperbolic Temporal Discounting
methods. We present the total design time for T = 20 questions,
taking the mean and ±1 s.e. over 10 realizations. Tests were
conducted on a lightweight CPU (see Appendix D).

Method Lower bound Upper bound
Frye et al. (2016) 3.500 ± 0.029 3.513 ± 0.029
Kirby (2009) 1.861 ± 0.008 1.864 ± 0.009
Fixed 2.518 ± 0.007 2.524 ± 0.007
DAD 5.021 ± 0.013 5.123 ± 0.015
Badapted 4.454 ± 0.016 4.536 ± 0.018

Table 3. Final lower and upper bounds on the total information
IT (π) for the Hyperbolic Temporal Discounting experiment. The
bounds are finite sample estimates ofLT (π, L) and UT (π, L) with
L = 5000. The errors indicate±1 s.e. over the sampled histories.

6.2. Hyperbolic temporal discounting

In psychology, temporal discounting is the phenomenon that
the utility people attribute to a reward typically decreases
the longer they have to wait to receive it (Critchfield &
Kollins, 2001; Green & Myerson, 2004). For example, a
participant might be willing to trade £90 today for £100
in a month’s time, but not for £100 in a year. A common
parametric model for temporal discounting in humans is the
hyperbolic model (Mazur, 1987); we study a specific form
of this model proposed by Vincent (2016).

We design a sequence of T = 20 experiments, each tak-
ing the form of a binary question “Would you prefer £R
today, or £100 in D days?” with design ξ = (R,D) that
must be chosen at each stage. As real applications of this
model would involve human participants, the available time
to choose designs is strictly limited. We consider DAD,
the aforementioned fixed design policy, and strategies that
have been used specifically for experiments of this kind:
Kirby (2009), a human constructed fixed set of designs;
Frye et al. (2016), a problem-specific adaptive strategy; and
Vincent & Rainforth (2017), a partially customized sequen-
tial BOED method, called Badapted, that uses population
Monte Carlo (Cappé et al., 2004) to approximate the pos-
terior distribution at each step and a bandit approach to
optimize the EIG over possible designs.

We begin by investigating the time required to deploy each
of these methods. As shown in Table 2, the non-amortized
Badapted method takes the longest time, while for DAD,
the total deployment time is less than 0.1 seconds—totally
imperceptible to a participant.
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Figure 3. An example of the designs learnt by two of the problem-
specific baselines and DAD. We plot the difference in perceived
value of the two propositions “£R today” and “£100 in D days”
for a certain participant, represented by a specific value of the
latent variable θ. A difference of 0 indicates that the participant is
indifferent between the two offers.

Table 3 shows the performance of each method. We see that
DAD performs best, surpassing bespoke design methods that
have been proposed for this problem, including Badapted
which has a considerably larger computation budget. Figure
3 demonstrates how the designs learnt by DAD compare
qualitatively with the two most competitive problem-specific
baselines. As with Badapted, DAD designs rapidly cluster
near the indifference point.

This experiment demonstrates that DAD can successfully
amortize the process of experimental design in a real appli-
cation setting. It outperforms some of the most successful
non-amortized and highly problem-specific approaches with
a fraction of the cost during the real experiment.

6.3. Death process

We conclude with an example from epidemiology (Cook
et al., 2008) in which healthy individuals become infected
at rate θ. The design problem is to choose observations
times ξ > 0 at which to observe the number of infected
individuals: we select T = 4 designs sequentially with an
independent stochastic process observed at each iteration.
We compare to our fixed and variational baselines, along
with the adaptive SeqBED approach of Kleinegesse et al.
(2020).

First, we examine the compute time required to deploy each
method for a single run of the sequential experiment. The
times illustrated in Table 4 show that the adaptive strategy
learned by DAD can be deployed in under 0.01 seconds,
many orders of magnitude faster than the non-amortized
methods, with SeqBED taking hours for one rollout.

Next, we estimate the objective IT (π) by averaging the
information gain over simulated rollouts. The results in
Table 4 reveal that DAD designs are superior to both fixed
design and variational adaptive design, tending to uncover
more information about the latent θ across many possible
experimental trajectories. For comparison with SeqBED, we
were unable to perform sufficient rollouts to obtain a high

148



Deep Adaptive Design: Amortizing Sequential Bayesian Experimental Design

Method Deployment time (s) IT (π)
Fixed N/A 2.023 ± 0.007
DAD 0.0051 ± 12% 2.113 ± 0.008
Variational 1935.0 ± 2% 2.076 ± 0.034
SeqBED* 25911.0 1.590

Table 4. Total EIG IT (π) and deployment times for the Death
Process. We present the EIG ±1 s.e. over 10,000 rollouts (fixed
and DAD), 500 rollouts (variational) or *1 rollout (SeqBED). The
IG can be efficiently evaluated in this case (see Appendix D).
Runtimes computed as per Table 2.

quality estimate of IT (π). Instead, we conducted a single
rollout of each method with θ = 1.5 fixed. The resulting
information gains for this one rollout were: 1.590 (SeqBED),
1.719 (Variational), 1.678 (Fixed), 1.779 (DAD).

7. Discussion
In this paper we introduced DAD—a new method utilizing
the power of deep learning to amortize the cost of sequential
BOED and allow adaptive experiments to be run in real
time. In all experiments DAD performed significantly better
than baselines with a comparable deployment time. Further,
DAD showed competitive performance against conventional
BOED approaches that do not use amortization, but make
costly computations at each stage of the experiment.

Surprisingly, we found DAD was often able to outperform
these non-amortized approaches despite using a tiny fraction
of the resources at deployment time. We suggest two reasons
for this. Firstly, conventional methods must approximate
the posterior p(θ|ht) at each stage. If this approximation
is poor, the resulting design optimization will yield poor
results regardless of the EIG optimization approach chosen.
Careful tuning of the posterior approximation could alleviate
this, but would increase computational time further and it is
difficult to do this in the required automated manner. DAD
sidesteps this problem altogether by eliminating the need
for directly approximating a posterior distribution.

Secondly, the policy learnt by DAD has the potential to be
non-myopic: it does not choose a design that is optimal for
the current experiment in isolation, but takes into account
the fact that there are more experiments to be performed in
the future. We can see this in practice in a simple experiment
using the location finding example with one source in 1D
with prior θ ∼ N(0, 1) and with T = 2 steps. This setting
is simple enough to compute the exact one-step optimal
design via numerical integration. Figure 4 [Left] shows the
design function learnt by DAD alongside the exact optimal
myopic design. The optimal myopic strategy for t = 1 is
to sample at the prior mean ξ1 = 0. At time t = 2 the
myopic strategy selects a positive or negative design with
equal probability. In contrast, the policy learnt by DAD is
to sample at ξ1 ≈ −0.4, which does not optimize the EIG
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Figure 4. 1D location finding with 1 source, T = 2. [Left] the
design function, dashed lines correspond to the first design ξ1,
which is independent of y1. [Right] I2(π), the total EIG ±1 s.e.

for T = 1 in isolation, but leads to a better overall design
strategy that focuses on searching the positive regime ξ2 >
ξ1 in the second experiment. Figure 4 [Right] confirms that
the policy learned by DAD achieves higher total EIG from
the two step experiment than the exact myopic approach.

Limitations and Future Work The present form of DAD
still possesses some restrictions that future work might look
to address. Firstly, it requires the likelihood model to be
explicit, i.e. that we can evaluate the density p(yt|θ, ξt).
Secondly, it requires the experiments to be conditionally in-
dependent given θ, i.e. p(y1:T |θ, ξ1:T ) =

∏T
t=1 p(yt|θ, ξt),

which may not be the case for, e.g. time series models.
Thirdly, it requires the designs themselves, ξt, to be contin-
uous to allow for gradient-based optimization. On another
note, DAD’s use of a policy to make design decisions es-
tablishes a critical link between experimental design and
model-based reinforcement learning (Sekar et al., 2020).
Though DAD is distinct in several important ways (e.g. the
lack of observed rewards), investigating these links further
might provide an interesting avenue for future work.

Conclusions DAD represents a new conception of adap-
tive experimentation that focuses on learning a design policy
network offline, then deploying it during the live experiment
to quickly make adaptive design decisions. This marks a de-
parture from the well-worn path of myopic adaptive BOED
(Sec. 2), eliminating the need to estimate intermediate pos-
terior distributions or optimize over designs during the live
experiment itself; it represents the first approach to allow
adaptive BOED to be run in real-time for general problems.
As such, we believe it may be beneficial to practitioners in
a number of fields, from online surveys to clinical trials.
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A. Proofs
We begin by showing that gL(θ0:L, hT ) from equation (9) is bounded by log(L+ 1) and that fL(θ0:L, hT ) from equation
(10) can potentially be unbounded. For the former

gL(θ0:L, hT ) = log
p(hT |θ0, π)

1
L+1

∑L
`=0 p(hT |θ`, π)

(18)

= log
p(hT |θ0, π)

p(hT |θ0, π) +
∑L
`=1 p(hT |θ`, π)

+ log(L+ 1) (19)

≤ log(1) + log(L+ 1). (20)

For the latter we have

fL(θ0:L, hT ) = log
p(hT |θ0, π)

1
L

∑L
`=1 p(hT |θ`, π)

→ +∞ as max
1≤`≤L

p(hT |θ`, π)→ 0 with p(hT |θ0, π) held constant.

Next we present proofs for all Theorems in the main paper, with each restated for convenience.

Theorem 1. The total expected information gain for policy π over a sequence of T experiments is

IT (π) := Ep(θ)p(hT |θ,π)

[∑T

t=1
Iht−1(ξt)

]
(7)

=Ep(θ)p(hT |θ,π) [log p(hT |θ, π)− log p(hT |π)] (8)

where p(hT |π) = Ep(θ)[p(hT |θ, π)].

Proof. We begin by rewriting Iht−1
in terms of the information gain. This closely mimics the development that we presented

in Section 2. By repeated appplication of Bayes Theorem we have

Iht−1
(ξt) = Ep(θ|ht−1)p(yt|θ,ξt)

[
log

p(yt|θ, ξt)
p(yt|ht−1, ξt)

]
(21)

= Ep(θ|ht−1)p(yt|θ,ξt)

[
log

p(θ|ht−1)p(yt|θ, ξt)
p(θ|ht−1)p(yt|ht−1, ξt)

]
(22)

= Ep(θ|ht−1)p(yt|θ,ξt)

[
log

p(θ|ht−1, ξt, yt)

p(θ|ht−1)

]
(23)

= Ep(θ|ht−1) [− log p(θ|ht−1)] + Ep(yt,θ|ξt,ht−1) [log p(θ|ht−1, ξt, yt)] (24)

= Ep(θ|ht−1) [− log p(θ|ht−1)] + Ep(yt|ξt,ht−1)p(θ|ht−1,ξt,yt) [log p(θ|ht−1, ξt, yt)] (25)

= Ep(yt|ξt,ht−1) [H[ p(θ|ht−1) ]−H[ p(θ|ht−1, ξt, yt) ] ] . (26)

Now noting that each Iht−1(ξt) is completely determined by ht−1 and π (in particular noting that ξt is deterministic given
these, while θ is already marginalized out in each Iht−1(ξt)), we can write

IT (π) = Ep(hT |π)

[
T∑

t=1

Iht−1(ξt)

]
(27)

=
T∑

t=1

Ep(ht−1|π)

[
Iht−1

(ξt)
]

(28)

and substituting in our earlier formulation for Iht−1(ξt)

=
T∑

t=1

Ep(ht−1|π)

[
Ep(yt|ξt,ht−1) [H[ p(θ|ht−1) ]−H[ p(θ|ht−1, ξt, yt) ] ]

]
. (29)
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We now observe that we can write ht = ht−1 ∪ {(ξt, yt)}, which allows us to rewrite this as

=

T∑

t=1

Ep(ht|π) [H[ p(θ|ht−1) ]−H[ p(θ|ht) ] ] (30)

=
T∑

t=1

Ep(hT |π) [H[ p(θ|ht−1) ]−H[ p(θ|ht) ] ] (31)

= Ep(hT |π)

[
T∑

t=1

H[ p(θ|ht−1) ]−H[ p(θ|ht) ]

]
(32)

= Ep(hT |π) [H[ p(θ) ]−H[ p(θ|hT ) ]] , (33)

where the last line follows from the fact that we have a telescopic sum. To complete the proof, we rearrange this as

= Ep(θ,hT |π) [log p(θ|hT )− log p(θ)] (34)

= Ep(θ)p(hT |θ,π)

[
log

p(θ)p(hT |θ, π)

p(hT |π)
− log p(θ)

]
(35)

= Ep(θ)p(hT |θ,π) [log p(hT |θ, π)− log p(hT |π)] (36)

as required.

Theorem 2 (Sequential PCE). For a design function π and a number of contrastive samples L ≥ 0, let

LT (π, L) = Ep(θ0,hT |π)p(θ1:L) [gL(θ0:L, hT )] (11)

where gL(θ0:L, hT ) is as per (9), and θ0, hT ∼ p(θ, hT |π), and θ1:L ∼ p(θ) independently. Given minor technical
assumptions discussed in the proof, we have4

LT (π, L) ↑ IT (π) as L→∞ (12)

at a rate O
(
L−1

)
.

Proof. We first show that LT (π, L) is a lower bound on IT (π):

IT (π)− LT (π, L) = Ep(θ0,hT |π)

[
log

p(hT |θ0, π)

p(hT |π)

]
− Ep(θ0,hT |π)Ep(θ1:L)

[
log

p(hT |θ0, π)
1

L+1

∑L
`=0 p(hT |θ`, π)

]
(37)

= Ep(θ0,hT |π)Ep(θ1:L)

[
log

1
L+1

∑L
`=0 p(hT |θ`, π)

p(hT |π)

]
(38)

= Ep(θ0,hT |π)Ep(θ1:L)

[
log

(
1

L+ 1

L∑

`=0

p(θ`|hT )

p(θ`)

)]
(39)

now introducing the shorthand p(θ−`0:L) := p
(
θ0:L\{`}

)
=
∏L
j=0,j 6=` p(θj),

= Ep(θ0,hT |π)Ep(θ1:L)

[
log

1
L+1

∑L
`=0 p(θ`|hT )p(θ−`0:L)

p(θ0:L)

]
. (40)

4xL ↑ x means that xL is a monotonically increasing sequence in L with limit x.
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Now by the systemtry on term in side the log, we see that this expectation would be the same if it were instead taken over
p(θi, hT |π)p(θ−i0:L) for any i ∈ {0, . . . , L} (with i = 0 giving the original form). Furthermore, the result is unchanged if
we take the expectation over the mixture distribution 1

L+1

∑L
i=0 p(θi, hT |π)p(θ−i0:L) = p(hT |π) 1

L+1

∑L
i=0 p(θi|hT )p(θ−i0:L)

and thus we have

= Ep(hT |π)E 1
L+1

∑L
i=0 p(θi|hT )p(θ−i0:L)

[
log

1
L+1

∑L
`=0 p(θ`|hT )p(θ−`0:L)

p(θ0:L)

]
(41)

= Ep(hT |π)

[
KL (p̃(θ0:L|hT )||p(θ0:L))

]
(42)

where p̃(θ0:L|hT ) = 1
L+1

∑L
`=0 p(θ`|hT )p(θ−`0:L), which is indeed a distribution since

∫
p̃(θ0:L|hT )dθ0:L =

1

L+ 1

L∑

`=0

(∫
p(θ`|hT )dθ` ·

∫
p(θ−`0:L)dθ−`0:L

)
= 1. (43)

Now by Gibbs’ inequality the expected KL in (42) must be non-negative, establishing IT (π) − LT (π, L) ≥ 0 and thus
IT (π) ≥ LT (π, L) as required.

We next show monotonicity in L, i.e. LT (π, L2) ≥ LT (π, L1) for L2 ≥ L1 ≥ 0, using similar argument as above

LT (π, L2)− LT (π, L1) = Ep(θ0,hT |π)Ep(θ1:L2
)

[
log

1
L1+1

∑L1

i=0 p(hT |θi, π)

1
L2+1

∑L2

j=0 p(hT |θj , π)

]
(44)

= Ep(θ0,hT |π)Ep(θ1:L2
)

[
log

1
L1+1

∑L1

i=0

(
p(θi|hT )/p(θi)

)

1
L2+1

∑L2

j=0

(
p(θj |hT )/p(θj)

)
]

(45)

= Ep(θ0,hT |π)Ep(θ1:L2
)

[
log

1
L1+1

∑L1

i=0

(
p(θi|hT )p(θ−i0:L1

)
)
/p(θ0:L1

)

1
L2+1

∑L2

j=0

(
p(θj |hT )p(θ−j0:L2

)
)
/p(θ0:L2)

]
(46)

= Ep(θ0,hT |π)Ep(θ1:L2
)

[
log

1
L1+1

∑L1

i=0 p(θi|hT )p(θ−i0:L2
)

1
L2+1

∑L2

j=0 p(θj |hT )p(θ−j0:L2
)

]
(47)

= Ep(hT |π)E 1
L+1

∑L1
`=0 p(θ`|hT )p(θ−`0:L2

)

[
log

1
L1+1

∑L1

i=0 p(θi|hT )p(θ−i0:L2
)

1
L2+1

∑L2

j=0 p(θj |hT )p(θ−j0:L2
)

]
(48)

= Ep(hT |π)

[
KL(p̃1||p̃2)

]
≥ 0 (49)

where p̃1 and p̃2 are, respectively, the distributions in the numerator and denominator in (48). The result then again follows
by Gibbs’ inequality.

Next we show LT (π, L) → IT (π) as L → ∞. First, note that the denominator in (11), 1
L+1

∑L
`=0 p(hT |θ`, π), is a

consistent estimator of the marginal p(hT |π), since 1
L+1p(hT |θ0, π)→ 0, and by the Strong Law of Large Numbers

1

L+ 1

L∑

`=1

p(hT |θ`, π) =
L

L+ 1
· 1

L

L∑

`=1

p(hT |θ`, π)
a.s.−−→ Ep(θ) [p(hT |θ, π)] = p(hT |π). (50)

Now from (38) we also have that

IT (π)− LT (π, L) = Ep(θ0,hT |π)Ep(θ1:L)

[
log

1
L+1

∑L
`=0 p(hT |θ`, π)

p(hT |π)

]
(51)

and we have log
1

L+1

∑L
`=0 p(hT |θ`,π)

p(hT |π) → 0 almost surely as L→∞. The minor technical assumption, which is required to
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establish convergence is that there exist some 0 < κ1, κ2 <∞ such that5

κ1 ≤
p(hT |θ, π)

p(hT |π)
≤ κ2 ∀θ, hT . (52)

using this assumption, the integrand of (51) is bounded, because
∣∣∣∣∣log

1
L+1

∑L
`=0 p(hT |θ`, π)

p(hT |π)

∣∣∣∣∣ =

∣∣∣∣∣log

(
1

L+ 1

L∑

`=0

p(hT |θ`, π)

p(hT |π)

)∣∣∣∣∣ (53)

≤ max

(∣∣∣∣log

(
max
`

p(hT |θ`, π)

p(hT |π)

)∣∣∣∣ ,
∣∣∣∣log

(
min
`

p(hT |θ`, π)

p(hT |π)

)∣∣∣∣
)

(54)

≤ max (|log κ2| , |log κ1|) (55)
<∞. (56)

Thus, the Bounded Convergence Theorem can be applied to conclude that IT (π)− LT (π, L)→ 0 as L→∞.

Finally, for the rate of convergence we apply the inequality log x ≤ x− 1 to (38) to get

IT (π)− LT (π, L) = Ep(θ0,hT |π)Ep(θ1:L)

[
log

1
L+1

∑L
`=0 p(hT |θ`, π)

p(hT |π)

]
(57)

≤ Ep(θ0,hT |π)Ep(θ1:L)

[
1

L+1

∑L
`=0 p(hT |θ`, π)

p(hT |π)
− 1

]
(58)

= Ep(θ0,hT |π)




1
L+1

(
p(hT |θ0π) +

∑L
`=1 Ep(θ1:L)[p(hT |θ`, π)]

)

p(hT |π)
− 1


 (59)

= Ep(θ0,hT |π)

[
1

L+1 (p(hT |θ0π) + Lp(hT |π))

p(hT |π)
− 1

]
(60)

=
1

L+ 1
Ep(θ0,hT |π)

[
p(hT |θ0, π)

p(hT |π)
− 1

]
(61)

=
C

L+ 1
, (62)

where we can conclude C <∞ using (52). Combining this with the our previous result showing that LT (π, L) is a lower
bound on IT (π), we have shown that

0 ≤ IT (π)− LT (π, L) ≤ C

L+ 1
. (63)

This establishes the O(L−1) rate of convergence.

Theorem 3 (Permutation invariance). Consider a permutation σ ∈ Sk acting on a history h1
k, yielding h2

k =
(ξσ(1), yσ(1)), ..., (ξσ(k), yσ(k)). For all such σ, we have

E

[
T∑

t=1

Iht−1
(ξt)

∣∣∣∣∣hk = h1
k

]
= E

[
T∑

t=1

Iht−1
(ξt)

∣∣∣∣∣hk = h2
k

]

such that the EIG is unchanged under permutation. Further, the optimal policies starting in h1
k and h2

k are the same.

Technical note: In this statement, the first expectation is with respect to p(hT |π) for policy π and the second is with respect
to p(hT |π′), where for t > k we set π′(ht) = π(σ−1(ht)) where σ−1 acts on the first k labels by permutation and as the
identity on other labels. This means we remove explicit variability under permutation caused by π, and show that no other
source of variability can arise.

5In practice, we can actually weaken this assumption significantly if necessary by making κ1 and κ2 dependent on hT and θ
then assuming that the expectation Ep(θ0,hT |π)Ep(θ1:L)[log |κi(θj , hT )|] is finite for i ∈ {1, 2} and j ∈ {0, 1}. This then permits
κ1(hT , θ) → 0 and κ2(hT , θ) → ∞ for certain hT and θ, provided that these events are zero measure under both p(θ, hT |π) and
p(θ)p(hT |π), thereby avoiding potential issues with tail behavior in the limits of extreme values for θ.

156



Deep Adaptive Design: Amortizing Sequential Bayesian Experimental Design

Proof. To begin, we set up some notation. Given the partial history hk = h1
k, we complete the experiment by sampling

(ξt, yt) for t = k + 1, ..., T . We denote the resulting full history as h1
T , and define h2

T similarly. Next, we use Theorem 1 to
rewrite the conditional objective under consideration as

Ep(h1
T |π)

[
T∑

t=1

Iht−1(ξt)

∣∣∣∣∣hk = h1
k

]
= Ep(θ|h1

k)
∏T
t=k+1 p(yt|θ,ξt)

[
log p(h1

T |θ, π)− log p(h1
T |π)

]
(64)

= Ep(θ|h1
k)

∏T
t=k+1 p(yt|θ,ξt)

[
log p(θ|h1

T )− log p(θ)
]

(65)

= Ep(θ|h1
k)p(h1

T |h1
k,θ,π)

[
log p(θ|h1

T )− log p(θ)
]
. (66)

A central point of the proof is that the posterior distribution p(θ|ht) is invariant to the order of the history. Indeed, we have

p(θ|ht) ∝ p(θ)
t∏

s=1

p(ys|θ, ξs) (67)

which shows that p(θ|h1
k) = p(θ|h2

k). Given a continuation of the history (ξk+1, yk+1), ..., (ξT , yT ), if we use the same
continuation starting from h1

k and h2
k to give h1

T and h2
T then we have p(θ|h1

T ) = p(θ|h2
T ). However, we need to show that

the continuations (ξk+1, yk+1), ..., (ξT , yT ) are equal in distribution.

We now show that the sampling distributions of (ξk+1, yk+1), ..., (ξT , yT ) are equal starting from h1
k and h2

k. We have
shown that θ ∼ p(θ|h1

k) is unchanged in distribution if we instead sample θ ∼ p(θ|h2
k). Further, we have

ξ1
k+1 = π(h1

k) ξ2
k+1 = π′(h2

k) (68)

which, by the construction of π′ implies ξ1
k+1 = ξ2

k+1. Together, these results imply that the observations y1
k+1 and y2

k+1

are equal in distribution. Proceeding inductively, since h1
k+1 and h2

k+1 are equal in distribution a similar argument shows
that h1

k+2 and h2
k+2 have the same distribution. Continuing in this way, we have that h1

T and h2
T are equal in distribution.

Together, these results imply that

Ep(θ|h1
k)p(h1

T |h1
k,θ,π)

[
log p(θ|h1

T )− log p(θ)
]

= Ep(θ|h2
k)p(h2

T |h2
k,θ,π

′)

[
log p(θ|h2

T )− log p(θ)
]

(69)

which conclude the first part of the proof.

To establish the permutation invariance of the optimal policy π∗, we reason by induction starting with k = T − 1, using
a dynamic programming style argument. Given hT−1, the total EIG is a function of p(θ|hT−1) and ξT . Since we do not
need to account for future asymmetry in the policy, we immediately have that the optimal final design ξT only depends on
p(θ|hT−1), which implies that is invariant to the order of the history.

We now assume that the optimal policy is permutation invariant starting from k + 2. Using the previous result (69), we
separete out the design ξk+1 and substitute π∗ for both π and π′ (since it is permutation invariant for the steps after k + 1 by
inductive hypothesis) to give

Ep(θ|h1
k)p(yk+1|θ,ξk+1)

∏T
t=k+2 p(yt|θ,π∗(ht−1))

[
log p(θ|h1

T )− log p(θ)
]

= Ep(θ|h2
k)p(yk+1|θ,ξk+1)

∏T
t=k+2 p(yt|θ,π∗(ht−1))

[
log p(θ|h2

T )− log p(θ)
]
.

(70)

To extend the optimal policy to k + 1, we consider choosing ξk+1 and then following π∗ thereafter. As (70) shows us, the
decision problem for ξk+1 is the same starting from h1

k and h2
k because the posterior distributions p(θ|h1

k) and p(θ|h2
k) are

equal, and the optimal policy after k+ 1 does not depend on history order. This implies that the optimal choice of ξk+1 is the
same for h1

k and h2
k. This implies that the optimal policies starting in h1

k and h2
k are the same. This completes the proof.

Theorem 4. For a design function π and a number of contrastive samples L ≥ 1, let

UT (π, L) = E

[
log

p(hT |θ0, π)
1
L

∑L
`=1 p(hT |θ`, π)

]
(71)

where the expectation is over θ0, hT ∼ p(θ, hT |π) and θ1:L ∼ p(θ) independently. Then,

UT (π, L) ↓ IT (π) as L→∞ (72)

at a rate O(L−1).
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Proof. We first show UT (π, L) is an upper bound to IT (π)

UT (π, L)− IT (π) = Ep(θ0,hT |π)Ep(θ1:L)

[
log

p(hT |θ0, π)
1
L

∑L
`=1 p(hT |θ`, π)

]
− Ep(θ0,hT |π)

[
log

p(hT |θ0, π)

p(hT |π)

]
(73)

= Ep(θ0,hT |π)Ep(θ1:L)

[
log p(hT |π)− log

(
1

L

L∑

`=1

p(hT |θ`, π)

)]
(74)

now using Jensen’s inequality

≥ Ep(θ0,hT |π)

[
log p(hT |π)− log

(
1

L

L∑

`=1

Ep(θ`) [p(hT |θ`, π)]

)]
(75)

= Ep(θ0,hT |π)

[
log p(hT |π)− log

(
1

L

L∑

`=1

p(hT |π)

)]
(76)

= Ep(θ0,hT |π) [log p(hT |π)− log p(hT |π)] (77)
= 0. (78)

To show monotonicity in L, pick L2 ≥ L1 ≥ 0 and consider the difference

δ := UT (π, L1)− UT (π, L2) = Ep(θ0,hT |π)Ep(θ1:L2
)

[
log

1
L2

∑L2

j=1 p(hT |θj , π)

1
L1

∑L1

i=1 p(hT |θi, π)

]
. (79)

Notice that we can write expression in the numerator 1
L2

∑L2

j=1 p(hT |θj , π) = EJ1,...,JL1

[
1
L1

∑L1

k=1 p(hT |θJk , π)
]
, where

the indices Jk have been uniformly drawn from 1, . . . , L2. We have

δ = Ep(θ0,hT |π)Ep(θ1:L2
)

[
logEJ1,...,JL1

[
1

L1

L1∑

k=1

p(hT |θJk , π)

]
− log

1

L1

L1∑

i=1

p(hT |θi, π)

]
(80)

now applying Jensen’s Inequality

≥ Ep(θ0,hT |π)Ep(θ1:L2
)

[
EJ1,...,JL1

[
log

1

L1

L1∑

k=1

p(hT |θJk , π)

]
− log

1

L1

L1∑

i=1

p(hT |θi, π)

]
(81)

then use the fact that any L1-subset of θ1, ..., θL2 has the same distribution

= Ep(θ0,hT |π)Ep(θ1:L2
)

[
log

1

L1

L1∑

i=1

p(hT |θi, π)− log
1

L1

L1∑

i=1

p(hT |θi, π)

]
= 0 (82)

which establishes monotonicity.

Finally, convergence is shown analogously to Theorem 2. Again we adopt the assumption (52). The Strong Law of Large
Numbers gives us almost sure convergence log

(
1
L

∑L
`=1 p(hT |θ`, π)

)
→ log p(hT |π) as L→∞. Applying the Bounded

Convergence Theorem, as in Theorem 2, we have

lim
L→∞

(UT (π, L)− IT (π, L)) = Ep(θ0,hT |π)Ep(θ1:L)

[
lim
L→∞

log
p(hT |π)

1
L

∑L
`=1 p(hT |θ`, π)

]
(83)

= 0. (84)
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Finally, for the rate of convergence, we have

UT (π, L)− IT (π) = Ep(θ0,hT |π)Ep(θ1:L)

[
log

p(hT |π)
1
L

∑L
`=1 p(hT |θ`, π)

]
(85)

= Ep(θ0,hT |π)Ep(θ1:L)

[
− log

(
1

L

L∑

`=1

p(hT |θ`, π)

p(hT |π)

)]
(86)

= Ep(θ0,hT |π)Ep(θ1:L)

[
− log

(
1 +

1

L

L∑

`=1

(
p(hT |θ`, π)

p(hT |π)
− 1

))]
(87)

= Ep(θ0,hT |π)Ep(θ1:L)

[ ∞∑

n=1

(−1)n
xn

n

]
(88)

where x = 1
L

∑L
`=1

(
p(hT |θ`,π)
p(hT |π) − 1

)
and we have applied the Taylor expansion for log(1 + x). We have

Ep(θ0,hT |π)Ep(θ1:L) [x] = 0 (89)

Ep(θ0,hT |π)Ep(θ1:L)

[
x2
]

=
1

L
Ep(θ0,hT |π)Ep(θ1:L)

[(
p(hT |θ`, π)

p(hT |π)
− 1

)2
]

(90)

and higher order terms are o(L−1) (Angelova, 2012; Nowozin, 2018). This shows that UT (π, L)− IT (π) → 0 at a rate
O(L−1). This concludes the proof.

B. Additional bounds
In this section, we consider a more general lower bound on IT (π) based on the ACE bound of Foster et al. (2020). We
consider a parametrized proposal distribution q(θ;hT ) which can be used to approximate the posterior p(θ|hT ). One
example of such a proposal would be an amortized variational approximation to the posterior that takes as input hT and
outputs a variational distribution over θ. It would be possible to share the representation R(hT ) from (17) between the
design network and the inference network. However, the following theorem is not limited to variational posteriors, and
concerns any parametrized proposal distribution.
Theorem 5. For a design function π, a number of contrastive samples L ≥ 1, and a parametrized proposal q(θ;hT ), we
have the sequential Adaptive Contrastive Estimation (sACE) lower bound

IT (π) ≥ Ep(θ0,hT |π)q(θ1:L;hT )


log

p(hT |θ0, π)
1

L+1

∑L
`=0

p(hT |θ`,π)p(θ`)
q(θ`;hT )


 (91)

and the sequential Variational Nested Monte Carlo (sVNMC) upper bound

IT (π) ≤ Ep(θ0,hT |π)q(θ1:L;hT )


log

p(hT |θ0, π)
1
L

∑L
`=1

p(hT |θ`,π)p(θ`)
q(θ`;hT )


 . (92)

Proof. We begin by showing the sACE lower bound. The proof closely follows that of Theorem 2. We have the error term

δsACE = Ep(θ0,hT |π)

[
log

p(hT |θ0, π)

p(hT |π)

]
− Ep(θ0,hT |π)Eq(θ1:L;hT )


log

p(hT |θ0, π)
1

L+1

∑L
`=0

p(hT |θ`,π)p(θ`)
q(θ`;hT )


 (93)

= Ep(θ0,hT |π)Eq(θ1:L;hT )


log

1
L+1

∑L
`=0

p(hT |θ`,π)p(θ`)
q(θ`;hT )

p(hT |π)


 (94)

= Ep(θ0,hT |π)Eq(θ1:L;hT )

[
log

(
1

L+ 1

L∑

`=0

p(θ`|hT )

q(θ`;hT )

)]
(95)
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now introducing the shorthand q(θ−`0:L;hT ) := q
(
θ0:L\{`};hT

)
=
∏L
j=0,j 6=` q(θj ;hT ),

= Ep(θ0,hT |π)Eq(θ1:L;hT )

[
log

1
L+1

∑L
`=0 p(θ`|hT )q(θ−`0:L;hT )

q(θ0:L;hT )

]
. (96)

Now by the systemtry on term in side the log, we see that this expectation would be the same if it were instead
taken over p(θi, hT |π)q(θ−i0:L;hT ) for any i ∈ {0, . . . , L}. It is also the same if we take the expectation over

1
L+1

∑L
i=0 p(θi, hT |π)q(θ−i0:L;hT ) = p(hT |π) 1

L+1

∑L
i=0 p(θi|hT )q(θ−i0:L;hT ) and thus we have

= Ep(hT |π)E 1
L+1

∑L
i=0 p(θi|hT )q(θ−i0:L;hT )

[
log

1
L+1

∑L
`=0 p(θ`|hT )q(θ−`0:L;hT )

q(θ0:L;hT )

]
(97)

= Ep(hT |π)

[
KL (q̆(θ0:L;hT )||q(θ0:L;hT ))

]
(98)

where q̆(θ0:L;hT ) = 1
L+1

∑L
`=0 p(θ`|hT )q(θ−`0:L;hT ), which is indeed a distribution since

∫
q̆(θ0:L;hT )dθ0:L =

1

L+ 1

L∑

`=0

(∫
p(θ`|hT )dθ` ·

∫
q(θ−`0:L;hT )dθ−`0:L

)
= 1. (99)

Now by Gibb’s inequality the expected KL in (98) must be non-negative, establishing the required lower bound.

Turning to the sVNMC bound, we use a proof that is close in spirit to Theorem 4. We have the error term

δsV NMC = Ep(θ0,hT |π)Eq(θ1:L;hT )


log

p(hT |θ0, π)
1
L

∑L
`=1

p(hT |θ`,π)p(θ`)
q(θ`;hT )


− Ep(θ0,hT |π)

[
log

p(hT |θ0, π)

p(hT |π)

]
(100)

= Ep(θ0,hT |π)Eq(θ1:L;hT )

[
log p(hT |π)− log

(
1

L

L∑

`=1

p(hT |θ`, π)p(θ`)

q(θ`;hT )

)]
(101)

now using Jensen’s inequality

≥ Ep(θ0,hT |π)

[
log p(hT |π)− log

(
1

L

L∑

`=1

Eq(θ`;hT )

[
p(hT |θ`, π)p(θ`)

q(θ`;hT )

])]
(102)

= Ep(θ0,hT |π)

[
log p(hT |π)− log

(
1

L

L∑

`=1

Ep(θ`) [p(hT |θ`, π)]

)]
(103)

= Ep(θ0,hT |π)

[
log p(hT |π)− log

(
1

L

L∑

`=1

p(hT |π)

)]
(104)

= Ep(θ0,hT |π) [log p(hT |π)− log p(hT |π)] (105)
= 0. (106)

This establishes the upper bound.
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C. Gradient details
C.1. Score function gradient

Recall that our sPCE objective is

LT (πφ, L) = Ep(θ0:L)p(hT |θ0,πφ) [gL(θ0:L, hT )] (107)

= Ep(θ0:L)p(hT |θ0,πφ)

[
log

p(hT |θ0, πφ)
1

L+1

∑L
`=0 p(hT |θ`, πφ)

]
(108)

= Ep(θ0:L)p(hT |θ0,πφ)

[
log

p(hT |θ0, πφ)
∑L
`=0 p(hT |θ`, πφ)

]
+ log(L+ 1) (109)

Differentiating this gives:

dLT
dφ

= Ep(θ0:L)

[∫
d

dφ

(
p(hT |θ0, πφ) log

p(hT |θ0, πφ)
∑L
`=0 p(hT |θ`, πφ)

)
dhT

]
(110)

= Ep(θ0:L)

[∫
log

p(hT |θ0, πφ)
∑L
`=0 p(hT |θ`, πφ)

d

dφ
p(hT |θ0, πφ) + p(hT |θ0, πφ)

d

dφ
log

p(hT |θ0, πφ)
∑L
`=0 p(hT |θ`, πφ)

dhT

]
(111)

= Ep(θ0:L)

[ ∫
p(hT |θ0, πφ) log

p(hT |θ0, πφ)
∑L
`=0 p(hT |θ`, πφ)

(
d

dφ
log p(hT |θ0, πφ)

)
dhT (112)

+

∫
p(hT |θ0, πφ)

(
d

dφ
log p(hT |θ0, πφ)

)
dhT −

∫
p(hT |θ0, πφ)

d

dφ
log

L∑

`=0

p(hT |θ`, πφ)dhT

]
(113)

= Ep(θ0:L)Ep(hT |θ0,πφ)

[
log

p(hT |θ0, πφ)
∑L
`=0 p(hT |θ`, πφ)

(
d

dφ
log p(hT |θ0, πφ)

)
− d

dφ
log

L∑

`=0

p(hT |θ`, πφ)

]
. (114)

In line (112) we used the log-trick d
dxf(x) = f(x)

(
d
dx log f(x)

)
and again in line (114) (in the reverse direction), together

with the fact
∫

d
dφp(hT |θ0, πφ)dhT = d

dφ

∫
p(hT |θ0, πφ)dhT = 0.

C.2. Expanded reparametrized gradient

For completeness, we provided a fully expanded form of the gradient in (14), computed using the chain rule. In practice,
derivatives of this form are calculated automatically in PyTorch (Paszke et al., 2019).

Initially, we set up some additional notation. Suppose ξ the design is of dimension D1 and y the observation is of dimension
D2. Then u = (ξ, y) is of dimension D1 +D2. For an arbitrary scalar quantity x, we have

∂x

∂u
=
(

∂x
∂ξ(1)

... ∂x
∂ξ(D1)

∂x
∂y(1)

... ∂x
∂y(D2)

)
(115)

and
∂u

∂x
=
(
∂ξ(1)

∂x ... ∂ξ(D1)

∂x

∑D1

d=1
∂y(1)

∂ξ(d)
∂ξ(d)

∂x ...
∑D1

d=1
∂y(D2)

∂ξ(d)
∂ξ(d)

∂x

)>
. (116)

This notation enables us to concisely and clearly deal with both scalar and vector quantities. In general, the derivatives
∂a/∂b and da/db represent a matrix of shape (dim a,dim b) where one or both of a, b may have dimension 1. This notation
is particularly attractive because the Chain Rule for partial derivatives can be concisely expressed as follows. Suppose
a = a(b1(c), ..., bn(c), c), then the total derivative is given by

da

dc
=
∂a

∂c
+

n∑

i=1

∂a

∂bi

dbi
dc

(117)

where the normal rules of matrix multiplication apply. We now apply this in the context of the function g(θ0:L, hT ) which
was defined in Section 4.2.
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We have g = g(θ0:L, u1, ..., uT ). The Chain Rule implies that

dg

dφ
=

T∑

t=1

∂g

∂ut

dut
dφ

. (118)

We also have, for t = 1, ..., T , that ut = u(φ, ht−1, θ0, εt) = u(φ, u1, ..., ut−1, θ0, εt). This represents the dependence of ξt
on ht−1 via πφ, and the further dependence of yt on θ0 and εt. Expanding the derivatives again using the Chain Rule gives

dg

dφ
=

T∑

t=1

∂g

∂ut

(
∂ut
∂φ

+
t−1∑

s=1

∂ut
∂us

dus
dφ

)
. (119)

Again, we can expand the total derivative to give

dg

dφ
=

T∑

t=1

∂g

∂ut

(
∂ut
∂φ

+

t−1∑

s=1

∂ut
∂us

(
∂us
∂φ

+

s−1∑

r=1

∂us
∂ur

dur
dφ

))
. (120)

Rather than continuing in this manner, we observe that the current expansion (120) can be split up as follows

dg

dφ
=

T∑

t=1

∂g

∂ut

∂ut
∂φ

+
∑

1≤s<t≤T

∂g

∂ut

∂ut
∂us

∂us
∂φ

+
∑

1≤r<s<t≤T

∂g

∂ut

∂ut
∂us

∂us
∂ur

dur
dφ

(121)

which shows that we have completely enumerated over all paths of length 1 and 2 through the computational graph, and the
final term with a total derivative concerns paths of length 3 or more. This approach can be naturally extended to enumerate
over all paths. To write this concisely, we introduce a new variable k which denotes the length of the path, and then a sum
over all increasing sequences 1 ≤ t1 < ... < tk ≤ T . This gives

dg

dφ
=

T∑

k=1


 ∑

1≤t1<...<tk≤T

∂g

∂utk

∂utk
∂utk−1

...
∂ut2
∂ut1

∂ut1
∂φ


 . (122)

This can be written concisely as

dg

dφ
=

∑

k∈{1,...,T}
1≤t1<...<tk≤T

∂g

∂utk



k−1∏

j=1

∂utj+1

∂utj


 ∂ut1

∂φ
(123)

where the product is interpretted in the order given in (122) for the matrix multiplication to operate correctly, and an empty
product is equal to the identity.

D. Experiment details
Our experiments were implemented using PyTorch (Paszke et al., 2019) and Pyro (Bingham et al., 2018). An open-source
implementation of DAD, including code for reproducing each experiment, is available at https://github.com/
ae-foster/dad. Full details on running the code are given in the README.md file.

D.1. Location Finding

In this experiment we have K hidden objects or sources in Rd, d ∈ {1, 2, 3} and aim to learn their locations, θ = {θk}Kk=1.
The number of sources, K, is assumed to be known. Each of the sources emits a signal with intensity obeying the inverse-
square law. In other words, if a source is located at θk and we perform a measurement at a point ξ, the signal strength will
be proportional to 1

‖θk−ξ‖2 .

Since there are multiple sources, we consider the total intensity at location ξ, which is a superposition of the individual ones

µ(θ, ξ) = b+
K∑

k=1

αk
m+ ‖θk − ξ‖2

, (124)
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Figure 5. Log-total intensity

where αk can be known constants or random variables, b,m > 0 are constants controlling background and maximum signal,
respectively. Figure 5 shows the effect b and m have on log total signal strength.

We place a standard normal prior on each of the location parameters θk and we observe the log total intensity with some
Gaussian noise. We therefore have the following prior and likelihood:

θk
i.i.d.∼ N(0d, Id), log y | θ, ξ ∼ N(logµ(θ, ξ), σ). (125)

The model hyperparameters used in our experiments can be found in the table below.

Parameter Value
Number of sources, K 2
Base signal, b 10−1

Max signal, m 10−4

α1, α2 1
Signal noise, σ 0.5

We trained a DAD network to amortize experimental design for this problem, using the neural architecture outlined in
Section 4.3. Both the encoder and the decoder are simple feed-forward neural networks with a single hidden layer; details in
the following table. For the encoder

Layer Description Dimension Activation
Input ξ, y 3 -
H1 Fully connected 256 ReLU
Output Fully connected 16 -

and for the emitter

Layer Description Dimension Activation
Input R(ht) 16 -
H1 Fully connected 2 -
Output ξ 2 -

Since the likelihood is reparametrizable, we use (14) to calculate approximate gradients. We optimized the network using
Adam (Kingma & Ba, 2014) with exponential learning rate annealing with parameter γ. Full details are given in the
following table.
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Figure 6. Posterior distributions of the location finding example with K = 1 source R.

Parameter Value
Inner samples, L 2000
Outer samples 2000
Initial learning rate 5× 10−5

Betas (0.8, 0.998)
γ 0.98
Gradient steps 50000
Annealing frequency 1000

We used a greater number of inner and outer samples for a more accurate estimate of IT (π) for evaluation when computing
the presented values in Table 1 and in our Training Stability ablation, specifically L = 5 × 105 inner samples, and 256
(variational) or 2048 (other methods) outer samples.

Deployment times Deployment speed tests were performed on a CPU-only machine witht the following specifications:

Memory 16 GB 2133 MHz LPDDR3
Processor 2.8 GHz Quad-Core Intel Core i7
Operating System MacOS BigSur v.11.2.3

We took the mean and ±1 s.e. over 10 realizations. Deployment times for all methods are given in the following table

Method Deployment time (s)
Random 0.0026 ± 0.0001
Fixed 0.0018 ± 0.0001
DAD 0.0474 ± 0.0003
Variational 8963.2 ± 42.2

Discussion details In the discussion, we used a simpler form of the same model with K = 1 source and θ ∈ R, ξ ∈ R. In
this simplified setting, we can calculate the true optimal myopic (greedy) baseline using numerical integration. We evaluate
equation (1) using line integrals as follows

It(ξ) =

∫
p(θ|ht−1)Ep(y|θ)

[
log

p(y|θ)∫
p(θ′|ht−1)p(y|θ′)dθ′

]
dθ (126)

=

∫
p(θ|ht−1)Ep(y|θ)

[
log

∫
p(θ′|ht−1)p(y|θ′)dθ′

]
dθ + C (127)

where C = −H(p(y|θ)) is the entropy of a Gaussian, location independent and therefore constant with respect to ξ. We
calculate (127) for a range of designs, ξ ∈ Ξgrid, and select the optimal design ξ∗ = arg maxΞgrid It(ξ). The integrals
themselves are also calculated using numerical integration on a grid, Θgrid, and use sampling to calculate the inner
expectation; further details can in the table below.
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Figure 7. Comparison of two gradient methods for the hyperbolic temporal discounting model with T = 10 experiments.

Parameter Value
Design grid, Ξgrid 300 equally spaced from -3 to 3
θ grid, Θgrid 600 equally spaced from -4 to 4
y samples for inner expectation 400

It is important to emphasize that even in this simple one-dimensional setting evaluating the myopic strategy is extremely
costly and may require more sophisticated numerical integration techniques (e.g. quadrature) as posteriors become more
peaked. Furthermore, as Figure 6 indicates, the resulting posteriors are complex and multi-modal even in 1D. This
multi-modality may also be a reason why the variational method does not work well in this example.

D.2. Hyperbolic temporal discounting

We consider a hyperbolic temporal discounting model (Mazur, 1987; Vincent, 2016; Vincent & Rainforth, 2017) in which a
participant’s behaviour is characterized by the latent variables θ = (k, α) with prior distributions

log k ∼ N(−4.25, 1.5) α ∼ HalfNormal(0, 2) (128)

where the HalfNormal distribution is a Normal distribution truncated at 0. For given k, α, the value of the two propositions
“£R today” and “£100 in D days” with design ξ = (R,D) are given by

V0 = R, V1 =
100

1 + kD
. (129)

The probability of the participant selecting the second option, V1, rather than V0 is then modelled as

p(y = 1|k, α,R,D) = ε+ (1− 2ε)Φ

(
V1 − V0

α

)
(130)

where Φ is the c.d.f. of the standard Normal distribution, i.e.

Φ(z) =

∫ z

−∞

1√
2π

exp
(
− 1

2z
2
)

(131)

and we fix ε = 0.01. We considered the iterated version of this experiment, modelling T = 20 experiments with each
sampled setting for the latents k, α.

We began by training a DAD network to amortize experimental design for this problem. The design parameters R,D have
the constraints D > 0 and 0 < R < 100. We represented R,D in an unconstrained space ξd, ξr and transformed them using
the maps

D = exp (ξd) R = 100 sigmoid(ξr) (132)

We used the neural architecture outlined in Section 4.3. For the encoder Eφ1 we used the following network with two hidden
layers
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Layer Description Dimension Activation
Design input ξd, ξr 2 -
H1 Fully connected 256 Softplus
H2 Fully connected 256 Softplus
H3 Fully connected 16 -
H3’ Fully connected 16 -
Output y �H3 + (1− y)�H3′ 16 -

The emitter network Fφ2
similarly used two hidden layers as follows

Layer Description Dimension Activation
Input R(ht) 16 -
H1 Fully connected 256 Softplus
H2 Fully connected 256 Softplus
Output ξd, ξr 2 -

Since the number of experiments we perform is relatively large (T = 20), we constructed a score function gradient estimator
of (16) (see also § C.1 for details) and optimized this network with Adam (Kingma & Ba, 2014).We used exponential
learning rate annealing with parameter γ. Full details are given in the following table.

Parameter Value
Inner samples, L 500
Outer samples 500
Initial learning rate 10−4

Betas (0.9, 0.999)
γ 0.96
Gradient steps 100000
Annealing frequency 1000

For the fixed baseline, we used the same optimization settings, except we set the initial learning rate to 10−1. We trained the
DAD and fixed methods on a machine with 8 Intel(R) Xeon(R) CPU E5-2637 v4 @ 3.50GHz CPUs, one GeForce GTX 1080
Ti GPU, 126 GiB memory running Fedora 32. Note this is not the machine used to conudct speed tests. For the Badapted
baseline of Vincent & Rainforth (2017), we used the public code provided at https://github.com/drbenvincent/
badapted. We used 50 PMC steps with 100 particles. For the baselines of Frye et al. (2016) and Kirby (2009),
we used the public code provided at https://github.com/drbenvincent/darc-experiments-matlab/
tree/master/darc-experiments, which we reimplemented in Python. These methods do not involve a pre-training
step, except that we did not include time to compute the first design ξ1 within the speed test, as this can be computed before
the start of the experiment.

To implement the deployment speed tests fairly, we ran each method on a lightweight CPU-only machine, which more
closely mimics the computer architecture that we might expect to deploy methods such as DAD on. The specifications of
the machine we used are described below

Memory 7.7GiB
Processor Intel Core M-5Y10c CPU @ 0.80GHz × 4
Operating System Ubuntu 16.04 LTS

The values in Table 2 show the mean and standard error of the times observed from 10 independent runs on a idle system.
To make the final evaluation for each method in Table 3, we computed the sPCE and sNMC bounds using L = 5000
inner samples and 10000 outer samples of the outer expectation. We present the mean and standard error from the outer
expectation over 10000 rollouts.

D.2.1. ABLATION: TOTAL ENUMERATION

We compare the two methods for estimating gradients for the case of discrete observations: total enumeration of histories
(Equation 15) and score function gradient estimator (Equation 16). To this end we train DAD networks to perform T = 10
experiments, which gives rise to a total of 210 = 1024 possible histories.
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Figure 8. Comparison of posteriors obtained from a single rollout of the Death Process, used to compute the information gains quoted in
Section 6.3. The dashed line indicates the true value θ = 1.5 used to simulate responses.

Find that the two methods perform the same, both quantitatively and qualitatively. Table 5 reports the estimated upper and
lower bounds on the mutual information objective, indicating statistically equal performance of the two methods (mean
estimates are within 2 standard errors of each other). Figure 7 demonstrates the qualitative similarity in the designs learnt by
the two networks.

Lower bound, L10 Upper bound, U10

Complete enumeration 4.068± 0.0124 4.090± 0.0126
Score function gradient 4.037± 0.0126 4.058± 0.0128

Table 5. Final lower and upper bounds on the total information I10(π) for the Hyperbolic Temporal Discounting experiment with T = 10
experiments and different gradient estimation schemes (see § 4.2 and § C.1 for details). The bounds are finite sample estimates of
L10(π, L) and U10(π, L) with L = 5000. The errors indicate ±1 s.e. over the sampled histories.

D.3. Death process

For the Death Process model (Cook et al., 2008), we use the settings that were described by Kleinegesse et al. (2020).
Specifically, we use a truncated Normal prior for the infection rate

θ ∼ TruncatedNormal(µ = 1, σ = 1,min = 0,max =∞). (133)

The likelihood is then given by

η = 1− exp(−ξθ) y|θ, ξ ∼ Binomial(N, η) (134)

where we set N = 50. We consider a sequential version of this experiment as in Kleinegesse et al. (2020), with T = 4 and
in which an independent stochastic process is observed at each step, meaning there are no constraints relating ξ1, ..., ξ4 other
than the natural constraint ξt > 0.

We began by training a DAD network to perform experimental design for this problem. We used the neural architecture
outlined in Section 4.3. For the encoder Eφ1

we used the following network with two hidden layers

Layer Description Dimension Activation
Input ξ, y 2 -
H1 Fully connected 128 Softplus
H2 Fully connected 128 Softplus
Output Fully connected 16 -

The emitter network Fφ2 similarly used two hidden layers as follows

Layer Description Dimension Activation
Input R(ht) 16 -
H1 Fully connected 128 Softplus
H2 Fully connected 128 Softplus
Output ξ 1 Softplus

167



Deep Adaptive Design: Amortizing Sequential Bayesian Experimental Design

Although the number of experiments we perform is relatively small (T = 4), we could not use complete enumeration due to
the prohibitively large size of the outcome space (|Y| = 51). Hence, we constructed a score function gradient estimator of
(16) (see also § C.1 for details) and optimized the DAD network with Adam (Kingma & Ba, 2014).We used exponential
learning rate annealing with parameter γ. Full details are given in the following table.

Parameter Value
Inner samples, L 500
Outer samples 500
Initial learning rate 0.001
Betas (0.9, 0.999)
γ 0.96
Gradient steps 100000
Annealing frequency 1000

For the fixed baseline, we used the same optimization settings, except we set the initial learning rate to 10−1 and we set
γ = 0.85. We trained the DAD and fixed methods using the same machine as used for training in Section D.2. For the
variational baseline, we used a truncated Normal variational family to approximate the posterior at each step. We used SGD
with momentum to optimize the design at each step, and to optimize the variational approximation to the posterior at each
step. We used exponential learning rate annealing with paramter γ. The settings used were

Parameter Value
Design inner samples 250
Design outer samples 250
Design initial learning rate 10−2

Design γ 0.9
Design gradient steps 5000
Inference initial learning rate 10−3

Inference γ 0.2
Inference gradient steps 5000
Momentum 0.1
Annealing frequency 1000

For the SeqBED baseline, we used the code publicly available at https://github.com/stevenkleinegesse/
seqbed. The speed tests except for SeqBED were implemented as in Section D.2. For SeqBED and the variational method,
we did not include the time to compute the first design as deployment time, as this can be computed before the start of the
experiment. Due to its long-running nature, we implemented the speed test for SeqBED using a more powerful machine
with 40 Intel(R) Xeon(R) CPU E5-2680 v2 @ 2.80GHz processors and 189GiB memory. Therefore, the timing value for
SeqBED given in Table 4 represents a significant under-estimate of the expected computational time required to deploy this
method. However, we note that SeqBED can be applied to a broader class of implicit likelihood models.

For evaluation of I4(π) in the Death Process, it is possible to compute the information gain H[p(θ)]−H[p(θ|hT )] to high
accuracy using numerical integration. We then took the expectation of the information gain over rollouts, see Table 4 for the
exact number of rollouts used. This gives us an estimate

I4(π) = Ep(hT |π) [H[p(θ)]−H[p(θ|hT )]] (135)

which is shown to be a valid form for the total EIG in Section A.

For a comparison with SeqBED which is too slow to use this evaluation, we instead performed one rollout of each of
our methods using a fixed value θ = 1.5. This is close in spririt to the evaluation used in Kleinegesse et al. (2020).
Figure 8 shows the posterior distributions obtained from this rollout. The information gains were then computed using the
aforementioned numerical integration and are quoted in Section 6.3. We observe that, visually, the posterior distributions are
similar, and cluster near to the true value of θ.
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Abstract

We introduce implicit Deep Adaptive Design (iDAD), a new method for performing
adaptive experiments in real-time with implicit models. iDAD amortizes the cost
of Bayesian optimal experimental design (BOED) by learning a design policy
network upfront, which can then be deployed quickly at the time of the experiment.
The iDAD network can be trained on any model which simulates differentiable
samples, unlike previous design policy work that requires a closed form likelihood
and conditionally independent experiments. At deployment, iDAD allows design
decisions to be made in milliseconds, in contrast to traditional BOED approaches
that require heavy computation during the experiment itself. We illustrate the
applicability of iDAD on a number of experiments, and show that it provides a fast
and effective mechanism for performing adaptive design with implicit models.

1 Introduction

Designing experiments to maximize the information gathered about an underlying process is a key
challenge in science and engineering. Most such experiments are naturally adaptive—we can design
later iterations on the basis of data already collected, refining our understanding of the process with
each step [36, 45, 51]. For example, suppose that a chemical contaminant has accidentally been
released and is rapidly spreading; we need to quickly discover its unknown source. To this end,
we measure the contaminant concentration level at locations ξ1, . . . , ξT (our experimental designs),
obtaining observations y1, . . . , yT . Provided we can perform the necessary computations sufficiently
quickly, we can design each ξt using data from steps 1, . . . , t− 1 to narrow in on the source.

Bayesian optimal experimental design (BOED) [7, 32] is a principled model-based framework for
choosing designs optimally; it has been successfully adopted in a diverse range of scientific fields
[52, 58, 60]. In BOED, the unknown quantity of interest (e.g. contaminant location) is encapsulated
by a parameter θ, and our initial information about it by a prior p(θ). A simulator, or likelihood,
model y|θ, ξ describes the relationship between θ, our controllable design ξ, and the experimental
outcome y. To select designs optimally, the guiding principle is information maximization—we select
the design that maximizes the expected (Shannon) information gained about θ from the data y, or,
equivalently, that maximizes the mutual information between θ and y.

This naturally extends to adaptive settings by considering the conditional expected information gain
given previously collected data. The traditional approach, depicted in Figure 1a, is to fit a posterior
p(θ|ξ1:t−1, y1:t−1) after each iteration, and then select ξt in a myopic fashion using the one-step
mutual information (see, e.g., [51] for a review). Unfortunately, this approach necessitates significant
computation at each t and does not lend itself to selecting optimal designs quickly and adaptively.

Recently, Foster et al. [17] proposed an exciting alternative approach, called Deep Adaptive Design
(DAD), that is based on learning design policies. DAD provides a way to avoid significant computation
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Figure 1: Overview of adaptive BOED approaches applicable to implicit models.

at deployment-time by, prior to the experiment itself, learning a design policy network that takes
past design-outcome pairs and near–instantaneously returns the design for the next stage of the
experiment. The required training is done using simulated experimental histories, without the need to
estimate any posterior or marginal distributions. DAD further only needs a single policy network to
be trained for multiple experiments, further allowing for amortization of the adaptive design process.
Unfortunately, DAD requires conditionally independent experiments and only works for the restricted
class of models that have an explicit likelihood model we can simulate from, evaluate the density of,
and calculate derivatives for, substantially reducing its applicability.

To address this shortfall, we instead consider a far more general class of models where we require only
the ability to simulate y|θ, ξ and compute the derivative ∂y/∂ξ, e.g. via automatic differentiation [5].
Such models are ubiquitous in scientific modelling and include differentiable implicit models [19], for
which the likelihood density p(y|θ, ξ) is intractable. Examples include mixed effects models [15, 18],
various models from chemistry and epidemiology [1], the Lotka Volterra model used in ecology [19],
and models specified via stochastic differential equations (such as the SIR model [10]).

To perform rapid adaptive experimentation with this large class of models, we introduce implicit
Deep Adaptive Design (iDAD), a method for learning adaptive design policy networks using only
simulated outcomes (see Figure 1b). To achieve this, we introduce likelihood-free lower bounds on
the total information gained from a sequence of experiments, which iDAD utilizes to learn a deep
policy network. This policy network amortizes the cost of experimental design for implicit models
and can be run in milliseconds at deployment-time. To train it, we show how the InfoNCE [57]
and NWJ [37] bounds, popularized in representation learning, can be applied to the policy-based
experimental design setting. The optimization of both of these bounds involves simultaneously
learning an auxiliary critic network, bringing an important added benefit: it can be used to perform
likelihood-free posterior inference of the parameters given the data acquired from the experiment.

We also relax DAD’s requirement for experiments to be conditionally independent, allowing its
application in complex settings like time series data, and, through innovative architecture adaptations,
also provide improvements in the conditionally independent setting as well. This further expands the
model space for policy-based BOED, and leads to additional performance improvements.

Critically, iDAD forms the first method in the literature that can practically perform real-time adaptive
BOED with implicit models: previous approaches are either not fast enough to run in real-time for
non-trivial models, or require explicit likelihood models. We illustrate the applicability of iDAD on a
range of experimental design problems, highlighting its benefits over existing baselines, even finding
that it often outperforms costly non-amortized approaches. Code for iDAD is publicly available at
https://github.com/desi-ivanova/idad.

2 Background

The BOED framework [32] begins by specifying a Bayesian model of the experimental process,
consisting of a prior on the unknown parameters p(θ), a set of controllable designs ξ, and a data
generating process that depends on them y|θ, ξ; as usual in BOED, we assume that p(θ) does not
depend on ξ. In this paper, we consider the situation where y|θ, ξ is specified implicitly. This means
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that it is defined by a deterministic transformation, f(ε; θ, ξ), of a base (or noise) random variable, ε,
that is independent of the parameters and the design; e.g., ε ∼ N (ε; 0, I). The function f is itself
often not known explicitly in closed form, but is implemented as a stochastic computer program (i.e.
simulator) with input (θ, ξ) and ε corresponding to the draws from the underlying random number
generator (or equivalently the random seed). Regardless, the resulting induced likelihood density
p(y|θ, ξ) is still generally intractable, but sampling y|θ, ξ is possible.

Having acquired a design-outcome pair (ξ, y), we can quantify the amount of information we have
gained about θ by calculating the reduction in entropy from the prior to the posterior. We can further
assess the quality of a design ξ before acquiring y, by computing the expected reduction in entropy
with respect to the marginal distribution of the outcome, p(y|ξ) = Ep(θ)[p(y|θ, ξ)]. The resulting
quantity, called the expected information gain (EIG), is of central interest in BOED and is defined as

I(ξ) := Ep(θ)p(y|θ,ξ)
[
log

p(θ|ξ, y)

p(θ)

]
= Ep(θ)p(y|θ,ξ)

[
log

p(y|θ, ξ)
p(y|ξ)

]
. (1)

Note that I(ξ) is equivalent to the mutual information (MI) between the parameters θ and data
y when performing experiment ξ. The optimal ξ is then the one that maximises the EIG, i.e.
ξ∗ = arg maxξ I(ξ). Performing this optimization is a major computational challenge since the
information objective is doubly intractable [46]. For implicit models, the cost becomes even greater as
the likelihood is also not available in closed form, so estimating it, along with the marginal likelihood
p(y|ξ), is already itself a major computational problem [11, 20, 33, 54].

Jointly optimizing the design variables for all undertaken experiments at the same time using (1) is
called static experimental design. In practice, however, we are often more interested in performing
multiple experiments adaptively in a sequence ξ1, . . . , ξT , so that the choice of each ξt can be
guided by past experiments, namely the corresponding history ht−1 := {(ξi, yi)}i=1:t−1. The typical
approach in such settings is to sequentially perform (approximate) posterior inference for θ|ht−1,
followed by a one-step look ahead (myopic) BOED optimization that conditions on the observed
history. In other words, to determine the designs ξ1, . . . , ξT , we sequentially optimize the objectives

Iht−1(ξt) := Ep(θ|ht−1)p(yt|θ,ξ,ht−1)

[
log

p(yt|θ, ξ, ht−1)

p(yt|ξ, ht−1)

]
, t = 1, . . . , T. (2)

However, such approaches incur significant computational cost during the experiment itself, particu-
larly for implicit models [16, 21, 30]. This has critical consequences: in most cases they cannot be
run in real-time, undermining one’s ability to use them in practice.

2.1 Policy-based adaptive design with likelihoods

For tractable likelihood models, Foster et al. [17] proposed a new framework, called Deep Adaptive
Design (DAD), for adaptive experimental design that avoids expensive computations during the
experiment. To achieve this, they introduce a parameterized deterministic design function, or policy,
πφ that takes the history ht−1 as input and returns the design ξt = πφ(ht−1) to be used for the next
experiment as output. This set-up allows them to consider the objective

IT (πφ) = Ep(θ)p(hT |θ,πφ)

[
T∑

t=1

Iht−1
(ξt)

]
, ξt = πφ(ht−1), (3)

which crucially depends on the policy π rather than the individual design ξt. Learning a policy
up-front, rather than designs, is what allows adaptive experiments to be performed in real-time.

Under the assumption that yt is independent of ht−1 conditional on the parameters θ and the design ξt,
i.e. p(yt|θ, ξt, ht−1) = p(yt|θ, ξt), Foster et al. [17] showed that the objective can be simplified to

IT (πφ) = Ep(θ)p(hT |θ,πφ)

[
log

p(hT |θ, πφ)

p(hT |πφ)

]
, p(hT |θ, πφ) =

T∏

t=1

p(yt|θ, ξt). (4)

To deal with the marginal p(hT |πφ) in the denominator, they then derived several optimizable lower
bounds on IT (πφ), such as the sequential Prior Contrastive Estimation (sPCE) bound

LsPCE
T (πφ, L) = Ep(θ0)p(hT |θ,πφ)p(θ1:L)

[
log

p(hT |θ0, πφ)
1

L+1

∑L
`=0 p(hT |θ`, πφ)

]
≤ IT (πφ) ∀L ≥ 1. (5)
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The parameters of the policy φ, which takes the form of a deep neural network, are now learned
prior to the experiment(s) using stochastic gradient ascent on this bound with simulated experimental
histories. Design decisions can then be made using a single forward pass of πφ during deployment.
Unfortunately, training the DAD network by optimizing (5) requires the likelihood density p(hT |θ, π)
to be analytically available—an assumption that is too restrictive in many practical situations. The
architecture for DAD also assumes conditionally independent designs, which is unsuitable in some
settings like time-series data. Our method lifts both of these restrictions.

3 Implicit Deep Adaptive Design

We have seen that the traditional step-by-step approach to adaptive design for implicit models
[16, 21, 30] is too costly to deploy for most applications, whilst the only existing policy-based
approach, DAD [17], makes restrictive assumptions that prevent it being applied to implicit models.
We aim to relax the restrictive assumptions of the latter, making policy-based BOED applicable to all
models where we can sample from y|θ, ξ and compute the derivative ∂y/∂ξ, a strict superset of the
class of models that can be handled by DAD. This requires new training objectives for the policy
network that do not involve an explicit likelihood and are not based on conditionally independent
experiments, along with new architectures that work for non-exchangeable models like time series.

3.1 Information lower bounds for policy-based experimental design without likelihoods

To establish a suitable likelihood-free training objective for the implicit setting, our high-level idea is
to leverage recent advances in variational MI [see 42, for an overview], which have shown promise
for static BOED [16, 28, 29]. While using these bounds in the traditional framework of (2) would
not permit real-time experiments, one could consider a naive application of them to the policy
objective of (3) by replacing each Iht−1

with a suitable variational lower bound that uses a ‘critic’
Ut : Ht−1 ×Θ→ R to avoid explicit likelihood evaluations, where Ht−1 and Θ are the spaces of
histories and parameters respectively. An effective critic successfully encapsulates the true likelihood,
tightening the bound. Although its form depends on the choice of bound, all critics are parametrized
and trained in the same way, namely by a neural network Uφt which is optimized to tighten the bound.
Unfortunately, replacing each Iht−1

involves learning T such critic networks and requires samples
from all posteriors p(θ|ht−1), which will typically be impractically costly.

To avoid this issue, we show that we can obtain a unified information objective similar to (4), even
without conditionally independent experiments. The following proposition therefore marks the first
key milestone in eliminating the restrictive assumptions of [17], by establishing a unified objective
without intermediate posteriors that is valid even when the model itself changes between time steps.
Proposition 1 (Generalized total expected information gain). Consider the data generating distribu-
tion p(hT |θ, π) =

∏
t=1:T p(yt|θ, ξt, ht−1), where ξt = π(ht−1) are the designs generated by the

policy and, unlike in (4), yt is allowed to depend on the history ht−1. Then we can write (3) as

IT (π) = Ep(θ)p(hT |θ,π) [log p(hT |θ, π)]− Ep(hT |π) [log p(hT |π)] . (6)

Proofs are presented in Appendix A. The advantage of (6) is that we can draw samples from
p(θ)p(hT |θ, π) simply by sampling our model and taking forward passes through the design network.
However, neither of the densities p(hT |θ, π) and p(hT |π) are tractable for implicit models.

To side-step this intractability, we observe that IT (π) takes an analogous form to a MI between θ
and hT . For measure-theoretic reasons, namely because the ξ1:T are deterministic given y1:T (see
Appendix A for a full discussion), it is not the true MI. However, the following two propositions
show that we can treat IT (π) as if it were this MI. Specifically, we show that the InfoNCE [57]
and NWJ [37] bounds on the MI can be adapted to establish tractable lower bounds on our unified
objective IT (π). These two bounds both utilize a single auxiliary critic network Uψ that is trained
simultaneously with the design network.
Proposition 2 (NWJ bound for implicit policy-based BOED). For a design policy π and a critic
function U : HT ×Θ→ R, let

LNWJ
T (π, U) := Ep(θ)p(hT |θ,π) [U(hT , θ)]− e−1Ep(θ)p(hT |π) [exp(U(hT , θ))] , (7)

then IT (π) ≥ LNWJ
T (π, U) holds for any U . Further, the inequality is tight for the optimal critic

U∗NWJ(hT , θ) = log p(hT |θ, π)− log p(hT |π) + 1.
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Algorithm 1: Implicit Deep Adaptive Design with (iDAD)
Input: Differentiable simulator f , sampler for prior p(θ), number of experimental steps T
Output: Design network πφ, critic network Uψ
while Computational training budget not exceeded do

Sample θ ∼ p(θ) and set h0 = ∅
for t = 1, ..., T do

Compute ξt = πφ(ht−1)
Sample εt ∼ p(ε) and compute yt = f(εt; ξt, θ, ht−1)
Set ht = {(ξ1, y1), ..., (ξt, yt)}

end
Estimate∇φ,ψLT (πφ, Uψ) as per (10) where LT is LNWJ

T (7) or LNCE
T (8)

Update the parameters (φ, ψ) using stochastic gradient ascent scheme
end
For deployment, use the deterministic trained design network πφ to obtain a designs ξt directly.

Proposition 3 (InfoNCE bound for implicit policy-based BOED). Let θ1:L ∼ p(θ1:L)=
∏
i p(θi) be

a set of contrastive samples where L ≥ 1. For design policy π and critic function U :HT×Θ→R, let

LNCE
T (π, U ;L) := Ep(θ0)p(hT |θ0,π)Ep(θ1:L)

[
log

exp(U(hT , θ0))
1

L+1

∑L
i=0 exp(U(hT , θi))

]
, (8)

then IT (π) ≥ LNCE
T (π, U ;L) for any U and L ≥ 1. Further, the optimal critic, U∗NCE(hT , θ) =

log p(hT |θ, π)+ c(hT ) where c(hT ) is any arbitrary function depending only on the history, recovers
the sPCE bound in (5); the inequality is tight in the limit as L→∞ for this optimal critic.

We propose these two alternative bounds due to their complementary properties: the NWJ bound can
have large variance, but tends to be less biased. That is, the NWJ bound tends to be tighter for good
critics, but is itself more difficult to reliably estimate and thus optimize. While the NWJ critic must
learn to self-normalize, the InfoNCE bound avoids this issue but typically will not be tight for finite
L even with an optimal critic (note LNCE

T ≤ log(L+ 1) [42]). Consequently, only the NWJ objective
recovers the true optimal policy if our critic has infinite capacity and our optimization scheme is
perfect, i.e. arg maxπ maxU LNWJ

T (π, U) = π∗ 6= arg maxπ maxU LNCE
T (π, U ;L) in general, but it

can be more difficult to work with in practice. We present a third bound that provides a potential
solution to this, and further discuss the relative merits of the two bounds, in Appendix A.

We note that for both bounds the optimal critic does not depend on the learned policy. The final
trained critic can be used to approximate the density ratio p(hT |θ, π)/p(hT |π) = p(θ|hT )/p(θ),
either directly in the case of the NWJ critic, or via self-normalization for the InfoNCE bound. We can
use this to help approximate the posterior over θ given the collected real data from the experiment.
This means we can perform likelihood-free inference after training the critic, which extends previous
results [28, 29] from the static to the adaptive policy-based setting.

3.2 Parameterization and gradient estimation

In practice, we represent the policy π and the criticU as neural networks, πφ andUψ respectively, such
that the lower bounds become a function L(πφ, Uψ) of their parameters. By simultaneously optimiz-
ing L(πφ, Uψ) with respect to both φ and ψ, we both learn a tight bound that accurately represents
the true MI and a design policy network that produces high-quality designs under this metric.

We optimize these bounds using stochastic gradient methods [26, 49]. For this, we must account for
the fact that the parameter φ affects the probability distributions with respect to which expectations
are taken. We deal with this problem by utilizing the reparametrization trick [35, 48], for which we
assume that design space Ξ and observation space Y are continuous. To this end, we first formalize
the notion of a differentiable implicit model in the adaptive design setting as

yt = f(εt; ξt(ht−1), θ, ht−1), where θ ∼ p(θ), εt ∼ p(ε) ∀t ∈ {1, . . . , T} (9)

and we assume that we can compute the derivatives ∂f/∂ξ and ∂f/∂h. Interestingly, it is possible to
use an implicit prior without access to the density p(θ), and we do not need access to ∂f/∂θ.

5

175



hT History encoder

Dot Product

θ θ encoder

(a) Critic network, Uψ

ht History encoder MLP ξt+1

yt+1 ∼ y|ξt+1, θ, ht

(b) Policy network, πφ

Figure 2: Overview of network architectures used in iDAD.

Under these conditions, we can express the bounds in terms of expectations that do not depend on φ
or ψ, and hence move the gradient operator inside. For LNCE

T (πφ, Uψ;L), for example, we have

∇φ,ψLNCE
T = Ep(θ0:L)p(ε1:T )

[
∇φ,ψ log

exp(Uψ(hT (ε1:T , πφ), θ0))
1

L+1

∑L
i=0 exp(Uψ(hT (ε1:T , πφ), θi))

]
. (10)

While each element of the history hT depends on φ in a possibly nested manner, we do not need to
explicitly keep track of these dependencies thanks to automatic differentiation [5, 41].

Like DAD, our new method—which we call implicit Deep Adaptive Design (iDAD)—is trained with
simulated histories hT = {(ξi, yi)}i=1:T prior to the actual experiment, allowing design decision to
be made using a single forward pass during deployment. Unlike DAD, however, it does not require
knowledge of the likelihood function, nor the assumption of conditionally independent designs, which
significantly broadens its applicability. A summary of the iDAD approach is given in Algorithm 1.

3.3 Network architectures

The iDAD approach involves the simultaneous training of the policy πφ and critic Uψ networks. It
is essential to choose the neural architectures of these two components carefully to learn effective
policies: poor choices of critic architecture will lead to loose, unrepresentative, bounds, while poor
choices of policy architecture will directly lead to ineffective policies. Good choices of architecture
need to balance flexibility with ease of training, and will typically require the incorporation of
problem-specific inductive biases. A high-level summary of our architectures is shown in Figure 2.

The critic network, Uψ , takes a complete history hT and the parameter θ as input, and outputs a scalar.
Our suggested architecture first encodes the two inputs separately to representations of the same
dimension, using a history encoder, Eψh , and a parameter encoder, Eψθ , respectively. The output of
the critic is then simply taken as their dot product Uψ(hT , θ) := Eψh(hT )>Eψθ (θ); after training,
the two encodings correspond to approximate sufficient statistics [9]. This setup corresponds to a
separable critic architecture, as is commonly used in the representation learning literature [3, 8, 57].
While we use a simple MLP for Eψθ , the setup for Eψh varies with the context as we discuss below.

The policy network, πφ, takes the available history, ht, as input, and outputs a design. Our suggested
architecture makes use of a history encoder, Eφh , of the same form as Eψh , except that it must now
take in varying length inputs; its output remains a fixed dimensional embedding. We then pass this
embedding through an MLP to produce the design ξt+1. At the next iteration of the experiment, the
same policy network is then called again with the updated history ht+1 = ht ∪ {(ξt+1, yt+1)}.
We use the same architecture for both history encoders, Eψh and Eφh , but do not share network
parameters between them. This architecture first individually embeds each design–outcome pair
(ξt, yt) to a corresponding representation, rt, using a simple MLP that is shared across all time steps.
The produced history encoding is then an aggregation of these representations, with how this is done
depending on whether the experiments are conditionally independent, i.e. yt ⊥⊥ ht−1|θ, ξt, or not.

Foster et al. [17] proved that if experiments are conditionally independent, then the optimal policy is
invariant to the order of the history. We prove that the same is true for the critic in Proposition 5 in
Appendix C. In our setup, we can exploit this result by using a permutation invariant aggregation
strategy for {r1, . . . , rt} when conditional independence holds. The simplest approach to do this
would be to use sum-pooling [62], as was done in DAD. However, to improve on this, we instead
propose using a more advanced permutation invariant architecture based on self-attention [13, 25,
39, 47, 59], namely that of Parmar et al. [40]; we find this provides notable empirical gains. When
conditional independence does not hold, this approach is no longer appropriate and we instead use an
LSTM [22] for the aggregation. See Appendix C for further details.
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4 Related work

Adaptive policy-based BOED has only recently been introduced [17] and has not yet been extended
to implicit models—the gap that this work addresses. Previous approaches to adaptive experiments
usually follow the two-step greedy procedure described in Section 2. Methods for MI/EIG estimation
without likelihoods include the use of variational bounds [15, 16, 28] and ratio estimation [27, 30];
approximate Bayesian computation together with kernel density estimation [43]; and approximating
the intractable likelihood first, for example via polynomial chaos expansion [24], followed by
applying likelihood-based estimators, such as nested Monte Carlo [46]. The maximization step
in more traditional methods tends to rely on gradient-free optimization, including grid-search,
evolutionary algorithms [44], Bayesian optimization [15, 30], or Gaussian process surrogates [38].
More recently, gradient-based approaches have been introduced [15, 28], some of which allow the
estimation and optimization simultaneously in a single stochastic-gradient scheme [16, 23, 29].
From a posterior estimation perspective, likelihood-free inference can be performed via approximate
Bayesian computation [33, 54], ratio estimation [56], conventional MCMC for methods that make
tractable approximation to the likelihood [23, 24], or as a byproduct of MI estimation [16, 27, 29, 30].

5 Experiments

Table 1: Key properties of considered methods.

Adaptive Real-time Implicit
Random 7 N/A 3
Equal interval 7 N/A 3
MINEBED 7 N/A 3
SG-BOED 7 N/A 3
Variational 3 7 3
DAD 3 3 7
iDAD 3 3 3

We evaluate the performance of iDAD on a num-
ber of real-world experimental design problems
and a range of baselines. A summary of all the
methods that we consider is given in Table 1.
Since we aim to perform adaptive experiments in
real-time, we focus mostly on baselines that do
not require significant computational time dur-
ing the experiment. These include heuristic ap-
proaches that require no training, namely equal
interval designs (when possible) and random de-
signs, as well as static BOED approaches, where we, non-adaptively, choose all the designs prior to
the experiment by optimising the mutual information objective of Equation (1) with ξ = {ξ1, ..., ξT }
and y = {y1, . . . , yT }. The static BOED approaches we consider are the MINEBED method of [28]
and the likelihood-free ACE approach of [16], where we use the prior as a proposal distribution,
referring to this baseline as SG-BOED. We also implement the expensive traditional non-amortized
myopic strategy described in Section 2, for which we use the variational approach of [16], with
the Barber-Agakov bound [4, 15], at each experiment step (see Appendix D.3 for details). Finally,
where possible, we compare our method with DAD [17], in order to assess the performance gap
that would arise if we had an analytic likelihood. This comparison is done primarily for evaluation
purposes—because it has access to the likelihood density, DAD serves as an upper bound on the
performance iDAD can achieve; one should use explicit likelihood methods whenever possible.

The main performance metric that we focus on is the total EIG, IT (π), as given in (6). In cases
where the likelihood is available, we estimate the IT (π) using the sPCE lower bound in (5) and its
sister upper bound, the sequential Nested Monte Carlo bound [sNMC; 17]. To ensure that the bounds
are tight, we evaluate them with a large number of contrastive samples, i.e. L ≥ 105. Where the
likelihood is truly intractable, we assess the iDAD strategy in a more qualitative manner by looking at
the optimal designs and approximate posteriors. For the adaptive experiments, we further consider the
deployment time (i.e. the time required to propose a design), which is a critical metric for our aims.
All deployment times exclude the time needed to determine the first experiment as it can be computed
up-front, during the training phase. Timings for training the policy itself are given in Appendix D.

5.1 Location Finding

We first demonstrate our approach on the location finding experiment from [17]. Inspired by the
acoustic energy attenuation model [53], this experiment involves finding the locations of multiple
hidden sources, each emitting a signal with intensity that decreases according to the inverse-square
law. The total intensity—a superposition of these signals—can be measured noisily at any location.
The design problem is choosing where to measure the total signal in order to uncover the sources.
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Table 2: Lower bounds on the total information, I10(π), for the location finding experiment in
Section 5.1. The bounds were estimated using L = 5× 105 contrastive samples. Errors indicate ±1
standard errors estimated over 4096 histories (128 for variational). Corresponding upper bounds are
given in Table 6 in Appendix D.

Method \ θ dim. 4D 6D 10D 20D
Random 4.791 ± 0.040 3.468 ± 0.014 1.889 ± 0.011 0.552 ± 0.006
MINEBED 5.518 ± 0.028 4.221 ± 0.028 2.458 ± 0.029 0.801 ± 0.019
SG-BOED 5.547 ± 0.028 4.215 ± 0.030 2.454 ± 0.029 0.803 ± 0.019
Variational 4.639 ± 0.144 3.625 ± 0.165 2.181 ± 0.151 0.669 ± 0.097
iDAD (NWJ) 7.694 ± 0.045 5.765 ± 0.036 3.252 ± 0.039 0.877 ± 0.022
iDAD (InfoNCE) 7.750 ± 0.039 5.986 ± 0.037 3.251 ± 0.039 0.871 ± 0.020
DAD 7.967 ± 0.034 6.300 ± 0.030 3.337 ± 0.039 0.937 ± 0.022

Table 3: Lower and upper bounds on MI I10(π) for different network architectures on location
finding experiment using the InfoNCE bound. All estimates obtained as in Table 2.

Design Critic Lower bound Upper bound
Attention Attention 7.750 ± 0.039 7.863 ± 0.043
Attention Pooling 7.567 ± 0.037 7.632 ± 0.039
Pooling Attention 7.398 ± 0.040 7.470 ± 0.042
Pooling Pooling 7.135 ± 0.034 7.192 ± 0.041

Table 4: Deployment time of adaptive meth-
ods in 2D, measured on a CPU. Errors were
calculated on the basis of 10 runs.

Method Deployment time (sec.)
Variational 2256.0 ± 1%
iDAD (NWJ) 0.0167 ± 2%
iDAD (InfoNCE) 0.0168 ± 2%

DAD 0.0070 ± 6%

In Table 2 we can see that iDAD substantially outper-
forms all baselines including, perhaps surprisingly,
the traditional (non-amortized) adaptive variational
approach, despite its large computational cost shown
Table 4. The poor performance of the variational ap-
proach is likely driven by the inability of the mean-
field variational family to capture the highly non-
Gaussian true posterior, highlighting the detrimental
effect that wrong posteriors can have on determining
optimal designs when using the traditional sequen-
tial BOED approach.

Table 2 further shows that the performance gap to the likelihood-based DAD method is small, even
as the dimension of the design and parameter space grows. Though the information gained by all
methods decreases with the dimensionality, this is to be expected: in higher dimensions it is inherently
more difficult to infer the relative direction of the sources from observing their intensity. Overall, this
experiment demonstrates that iDAD is able to learn near-optimal amortized design policies without
likelihoods, while being run in milliseconds at deployment.

Ablation: attention to history. We next assess the benefit of utilizing our proposed more sophis-
ticated permutation invariant architectures, compared to the simple pooling of [62] used in [17].
Our approach incorporates attention layers into both networks that we train. This leads us to four
possible combinations of network architectures. Table 3 compares the efficacy of the resulting design
policies and strongly suggests that incorporating attention mechanisms in either and/or both networks
improves performance, with inclusion in the design network particularly important.

We preform further ablation studies to investigate and demonstrate important properties of our method,
such as its scalability with the number of experiments T , stability between different training runs and
performance to errors in the design network (introduced by not training the network to convergence).
Results and discussion are provided in Appendix D.4.4.

5.2 Pharmacokinetic model

Our next experiment is taken from the pharmacokinetics literature and has been studied in other recent
works on BOED for implicit models [28, 63]. Specifically, we consider the compartmental model
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Figure 3: Plots for pharmacokinetics experiment. a) Visualisation of model showing concentration
level as a function of measurement time for 3 values of θ, resulting in a quick (θq), average (θa),
or slow (θs) trajectory. b) Designs selected by an iDAD policy trained with InfoNCE. c) MI lower
bounds achieved by iDAD and baselines. All estimates obtained as in Table 2.

of [50], for which the distribution of an administered drug through the body is governed by three
parameters: absorption rate kα, elimination rate ke, and volume V , which form the parameters of
interest, i.e. θ = (kα, ke, V ). Given T = 5 patients, the design problem is to adaptively choose blood
sampling times, 0 ≤ ξt ≤ 24 hours, for each, measured from the the point the drug was administered
(with patient 2 not being administered until after sampling patient 1 etc). Plausible concentration
trajectories are shown in Figure 3a). Full details and further results are given in Appendix D.5.

We first qualitatively consider the design policy of iDAD (trained with the InfoNCE objective) in
Figure 3b). As we have not yet observed any data, the optimal design for the first patient (bottom row)
is the same for all θ. For the second patient, only guided by ξ1 and the outcome y1, iDAD is already
able to distinguish between quickly and slowly decaying concentration trajectories: it proposes a
significantly earlier measurement time for the quickly decaying trajectory (purple triangle, θq) and
later time for the slowly decaying one (yellow diamond, θs). For the third patient, iDAD always
targets the peak of the drug concentration distribution which is quite similar for all θ. Measurements
for the last two patients are made soon after the drug has been administered (∼ 15− 30 min), when
concentration levels increase rapidly, to capture information about how quickly the drug is absorbed.

1

3

0 10000 20000 30000 40000 50000

Training step

M
I l

ow
er

 b
ou

nd

DAD
iDAD (InfoNCE)
iDAD (NWJ)

Figure 4: Convergence of MI
lower bounds.

To provide more quantitative assessment and compare to our base-
lines, we again consider the final EIG values as shown in Fig-
ure 3c). This reveals that the iDAD strategies perform best among
the methods that are applicable to implicit models, confirming that
the learnt policies propose superior designs. The performance gap
to DAD, which relies on explicit likelihoods, is not statistically
significant (at the 5% level) for iDAD trained with InfoNCE, while
significant, but still small, for NWJ.

Finally, we consider the convergence of the iDAD networks under
the different training objectives and compare to DAD for reference.
As shown in Figure 4, although all three converge to approximately
the same value, they do so at rather different speeds: while DAD
requires about 5000 gradient updates, implicit methods need longer
training and tend to exhibit higher variance, particularly NWJ.

5.3 SIR Model

In this experiment, we demonstrate our approach on an implicit model from epidemiology. Namely,
we consider a formulation of the stochastic SIR model [10] that is based on stochastic differential
equations (SDEs), as done by [29]. Here, individuals in a fixed population belong to one of three
categories: susceptible, infected or recovered. Susceptible people can become infected and then
recover, with the dynamics of these two events being governed by two model parameters—the
infection rate β and the recovery rate γ. Our aim is to determine the optimal times τ at which to
measure the number of infected people, I(τ), in order to estimate the two parameters. This implicit
model is challenging because data simulation is expensive, since we need to solve many SDEs, and
experimental designs have a time-dependency. See Appendix D.6 for full details.
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Figure 5: a) Epidemic trajectories for 3 realization of (β, γ) with different reproduction numbers
R = β/γ. b) Designs selected by an iDAD policy trained with NWJ. c) Example posterior estimates
from the critic network given data generated with the ground-truth parameters shown by the red cross.

Table 5: MI lower bounds (±1 s.e.).

Method Lower bound
Random 1.915 ± 0.032
Equal interval 2.669 ± 0.023
MINEBED 3.400 ± 0.001
SG-BOED 3.752 ± 0.020
iDAD (NWJ) 3.869 ± 0.001
iDAD (InfoNCE) 3.915 ± 0.020

We train a iDAD networks to perform T = 5 experiments
and compare against random, equal interval, and static
design baselines; DAD cannot be run because the problem
corresponds to a true implicit model. Table 5 shows lower
bound estimates on the MI and demonstrates that iDAD
outperforms all compared methods. Note that a degree of
caution is required when analysing the results, as they are
influenced by unavoidable biases in the estimation process.
Namely, a critic is still required to estimate the MI lower
bound, and there may be variations in the effectiveness
of these critics, with less effective ones corresponding to
looser bounds and therefore underestimating the true MI. Nonetheless, for other models where such
checks are possible, we have found the bounds to be relatively tight, while, even if this turns out not
to be the case here, the fact that the critics for the static approaches are easier to train should mean our
relative evaluations for iDAD (and Random) are still conservative compared to the other baselines.

Figure 5 further demonstrates important qualitative results for this model. Figure 5a) shows different
epidemic trajectories, i.e. the number of infected I(τ) people as a function of measurement time τ ,
whilst 5b) plots their corresponding designs obtained from the learned iDAD policy. Importantly,
diseases with a significantly different profile, e.g. a slow (R = 1.3) or a fast (R = 8.0) spread result
in different sets of optimal designs, highlighting the adaptivity of iDAD. Finally, Figure 5c) shows
an example posterior distribution estimate from the learnt iDAD critic network, which we see is
consistent with the ground truth parameters.

6 Discussion

Limitations. The benefit that iDAD can be used in live experiments comes at the cost of substantial
training that can be computationally expensive. However, this is mitigated by its amortization of
the adaptive design process, such that only one network needs training, even if we have multiple
experiment instances. The cost–performance trade-off can also be directly controlled by judicious
choices of architecture and the amount of training performed. Another natural limitation is that the
use of gradients naturally restricts the approach to continuous design settings, something which future
work might look to address.

Conclusions. In this paper we introduced iDAD—the first policy-based adaptive BOED method
that can be applied to implicit models. By training a design network without likelihoods upfront,
iDAD is thus the first method that allows real-time adaptive experiments for simulator-based models.
In our experiments, iDAD performed significantly better than all likelihood-free baselines. Further,
by using models where the likelihood is available as a test bed, we found that it was able to almost
match the analogous likelihood-based adaptive approach, which acts as an upper bound on what
might be achieved without access to the likelihood itself. In conclusion, we believe iDAD marks a
step change in Bayesian experimental design for implicit models, allowing designs to be proposed
quickly, adaptively, and non-myopically during the live experiment.
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A Proofs

We present proof for all propositions made in the paper, restating each for convenience. We also
include additional discussion on technical aspects of the paper.

A.1 Unified objective for non-exchangeable experiments

Proposition 1 (Generalized total expected information gain). Consider the data generating distribu-
tion p(hT |θ, π) =

∏
t=1:T p(yt|θ, ξt, ht−1), where ξt = π(ht−1) are the designs generated by the

policy and, unlike in (4), yt is allowed to depend on the history ht−1. Then we can write (3) as
IT (π) = Ep(θ)p(hT |θ,π) [log p(hT |θ, π)]− Ep(hT |π) [log p(hT |π)] . (6)

Proof. Starting with the definition of the total EIG (3) of a policy π:

IT (π) = Ep(θ)p(hT |θ,π)

[∑T

t=1
Iht−1

(ξt)

]
(11)

we have by linearity of expectation

=
∑T

t=1
Ep(θ)p(hT |θ,π)

[
Iht−1

(ξt)
]

(12)

and since Iht−1 doesn’t depend on data acquired after t− 1 (the future doesn’t influence the past)

=
∑T

t=1
Ep(θ)p(ht−1|θ,π)

[
Iht−1(ξt)

]
(13)

which, applying Bayes rule, is equivalent to

=
∑T

t=1
Ep(ht−1|π)p(θ|ht−1)

[
Iht−1

(ξt)
]

(14)

Next, using Bayes rule we similarly rearrange Iht−1 :

Iht−1(ξt) = Ep(θ|ht−1)p(yt|θ,ξt,ht−1)

[
log

p(yt|θ, ξt, ht−1)

p(yt|ξt, ht−1)

]
(15)

= Ep(θ|ht−1)p(yt|θ,ξt,ht−1)

[
log

p(θ|yt, ξt, ht−1)

p(θ|ht−1)

]
(16)

= Ep(θ|ht−1)p(yt|θ,ξt,ht−1) [log p(θ|yt, ξt, ht−1)]− Ep(θ|ht−1) [log p(θ|ht−1)] (17)

= Ep(θ|yt,ξt,ht−1)p(yt|ξt,ht−1) [log p(θ|yt, ξt, ht−1)]− Ep(θ|ht−1) [log p(θ|ht−1)] (18)
and noting ht = ht−1 ∪ {(ξt, yt)}

= Ep(θ|ht)p(yt|ξt,ht−1) [log p(θ|ht)]− Ep(θ|ht−1) [log p(θ|ht−1)] (19)

= Ep(yt|ξt,ht−1)

[
Ep(θ|ht) [log p(θ|ht)]− Ep(θ|ht−1) [log p(θ|ht−1)]

]
(20)

Substituting this in (14), noting that θ has already been integrated out, yields

IT (π) =
∑T

t=1
Ep(ht−1|π)Ep(yt|ξt,ht−1)

[
Ep(θ|ht) [log p(θ|ht)]− Ep(θ|ht−1) [log p(θ|ht−1)]

]

(21)

=
∑T

t=1
Ep(ht|π)

[
Ep(θ|ht) [log p(θ|ht)]− Ep(θ|ht−1) [log p(θ|ht−1)]

]
(22)

= Ep(hT |π)

[∑T

t=1
Ep(θ|ht) [log p(θ|ht)]− Ep(θ|ht−1) [log p(θ|ht−1)]

]
, (23)

since we have a telescopic sum this simplifies to

= Ep(hT |π)

[
Ep(θ|hT ) [log p(θ|hT )]− Ep(θ) [log p(θ)]

]
(24)

and finally we apply Bayes rule again to rewrite as

= Ep(hT |π)p(θ|hT )

[
log p(θ|hT )− Ep(θ) [log p(θ)]

]
(25)

= Ep(θ)p(hT |θ,π) [log p(θ|hT )− log p(θ)] (26)

= Ep(θ)p(hT |θ,π) [log p(hT |θ, π)− p(hT |π)] (27)
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A.2 Objective function as a mutual information

We provide some additional discussion on the interpretation of IT (π) in (6) as a mutual information.
First, IT (π) is not a conventional mutual information between θ and hT . This is because, for the
deterministic policy π considered in this paper, the random variable hT does not have a density with
respect to Lebesgue measure on ΞT × YT . Indeed, since the designs ξ1:T are deterministic functions
of the observations y1:T , to express the sampling distribution of hT we would have to use Dirac
deltas, specifically

p(y1:T , ξ1:T |θ, π) =

T∏

t=1

δπ(ht−1)(ξt)p(yt|θ, ξt, ht−1). (28)

Due to the presence of Dirac deltas, this is not a conventional probability density, and hence we do
not regard IT (π) as the conventional mutual information between θ and hT .

We note that we defined p(hT |θ, π) in Proposition 1 differently to p(y1:T , ξ1:T |θ, π) in (28). Specifi-
cally, our definition

p(hT |θ, π) =
T∏

t=1

p(yt|θ, ξt, ht−1) (29)

only involves probability densities for y1:T , meaning that our p(hT |θ, π) is a well-defined probability
density on YT . Formally, we can treat the designs ξt, not as additional random variables, but as
part of the density for y1:T . Indeed, since the policy π is deterministic, it is possible to reconstruct
ht−1 and ξt from y1:t−1 and π, so we could write p(yt|θ, y1:t−1, π) := p(yt|θ, ξt, ht−1). In this
formulation, only y1:T are regarded as random variables. This provides a formal justification for the
form of p(hT |θ, π) that we give in Proposition 1. In this setting, we could formally identify IT (π) as
the mutual information between θ and y1:T .

However, it is helpful to think of IT (π) as a mutual information between θ and hT , because this
naturally leads to critics that have access to θ and hT , rather than θ and y1:T . This way of thinking
also connects naturally to the case of stochastic policies, which we now discuss.

If we consider additional noise in the design process so that designs are no longer a deterministic
function of past data, then IT (π) is the mutual information between θ and hT . In this case, we
introduce an additional likelihood for designs p(ξ|π, h), leading to the overall sampling distribution
for the data

p(hT |θ, π) =
T∏

t=1

p(ξt|π, ht−1)p(yt|θ, ξt, ht−1). (30)

Unlike in the deterministic case, this is valid probability density on ΞT ×YT . If we now consider the
mutual information between θ and hT for a fixed policy π we have

I(θ, hT ) = Ep(θ)p(hT |θ,π)

[
log

∏T
t=1 p(ξt|π, ht−1)p(yt|θ, ξt, ht−1)∫

Θ
p(θ)

∏T
t=1 p(ξt|π, ht−1)p(yt|θ, ξt, ht−1) dθ

]
(31)

= Ep(θ)p(hT |θ,π)

[
log

∏T
t=1 p(ξt|π, ht−1)

∏T
t=1 p(yt|θ, ξt, ht−1)

∏T
t=1 p(ξt|π, ht−1)

∫
Θ
p(θ)

∏T
t=1 p(yt|θ, ξt, ht−1) dθ

]
(32)

= Ep(θ)p(hT |θ,π)

[
log

∏T
t=1 p(yt|θ, ξt, ht−1)∫

Θ
p(θ)

∏T
t=1 p(yt|θ, ξt, ht−1) dθ

]
(33)

noticing that the design likelihood terms cancel out in the integrand, and we reduce to the same
integrand given in Proposition 1. Even when the policy is stochastic, the integrand in I(θ, hT ) only
involves terms of the form p(yt|θ, ξt, ht−1), and the likelihood of the design process completely
cancels. Thus, the stochasticity of the designs is only present in the sampling distribution p(hT |θ, π).
We therefore see that, as we consider the limiting case of p(ξ|π, h) as it approaches a deterministic
policy, only the sampling distribution of designs in I(θ, hT ) changes, with the integrand remaining
the same. Under mild assumptions, then, the mutual information between θ and hT approaches IT (π)
in this limit.
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A.3 NWJ and InfoNCE bounds

The next two propositions show that the two bounds—NWJ and InfoNCE—can be applied to the
policy-based adaptive BOED setting.
Proposition 2 (NWJ bound for implicit policy-based BOED). For a design policy π and a critic
function U : HT ×Θ→ R, let

LNWJ
T (π, U) := Ep(θ)p(hT |θ,π) [U(hT , θ)]− e−1Ep(θ)p(hT |π) [exp(U(hT , θ))] , (7)

then IT (π) ≥ LNWJ
T (π, U) holds for any U . Further, the inequality is tight for the optimal critic

U∗NWJ(hT , θ) = log p(hT |θ, π)− log p(hT |π) + 1.

Proof. Let π : H∗ → Ξ be any (deterministic) policy taking histories ht as inputs and returning a
design ξ as output, U : HT ×Θ→ R be any function and define g(hT , θ) := exp(U(hT ,θ))

Ep(hT |π)[exp(U(hT ,θ))]
.

First, we multiply the numerator and denominator of the unified objective (6) by g(hT , θ) > 0

IT (π) = Ep(θ)p(hT |θ,π)

[
log

p(hT |θ, π)

p(hT |π)

]
(34)

= Ep(θ)p(hT |θ,π) log

[
p(hT |θ, π)

p(hT |π)

g(hT , θ)

g(hT , θ)

]
(35)

= Ep(θ)p(hT |θ,π) [log g(hT , θ)] + Ep(θ)p(hT |θ,π)

[
log

p(hT |θ, π)

p(hT |π)g(hT , θ)

]
(36)

Next, note that the second term is a KL divergence between two distributions

Ep(θ)p(hT |θ,π)

[
log

p(hT |θ, π)

p(hT |π)g(hT , θ)

]
= Ep(θ)p(hT |θ,π)

[
log

p(θ)p(hT |θ, π)

p(θ)p(hT |π)g(hT , θ)

]
(37)

= KL(p(θ)p(hT |θ, π)||p̂(hT , θ)) ≥ 0 (38)

where p̂(hT , θ) = p(θ)p(hT |π)g(hT , θ) is a valid distribution since
∫
p(θ)p(hT |π)g(hT , θ)dθdhT = Ep(θ)p(hT |π)

exp(U(hT , θ))

Ep(hT |π) [exp(U(hT , θ))]
(39)

= Ep(θ)1 = 1. (40)

Therefore, we have

IT (π) ≥ Ep(θ)p(hT |θ,π) [log g(hT , θ)] (41)

= Ep(θ)p(hT |θ,π)[U(hT , θ)− logEp(hT |π) exp(U(hT , θ))] (42)

= Ep(θ)p(hT |θ,π)[U(hT , θ)]− Ep(θ)
[
logEp(hT |π) exp(U(hT , θ))

]
(43)

Now using the inequality log x ≤ e−1x

≥ Ep(θ)p(hT |θ,π)[U(hT , θ)]− e−1Ep(θ)p(hT |π) [exp(U(hT , θ))] (44)

= LNWJ
T (π, U) (45)

Finally, substituting U∗(hT , θ) = log p(hT |θ,π)
p(hT |π) + 1 in the bound we get

LNWJ
T (π, U∗) = Ep(θ)p(hT |θ,π)

[
log

p(hT |θ, π)

p(hT |π)
+ 1

]
− e−1Ep(θ)p(hT |π)

[
p(hT |θ, π)

p(hT |π)
e1

]
(46)

= IT (π) + 1− Ep(θ)p(hT |π)

[
p(hT |θ, π)

p(hT |π)

]
(47)

= IT (π), (48)

where we used Ep(θ)p(hT |π)

[
p(hT |θ,π)
p(hT |π)

]
= Ep(θ)p(hT |θ,π) [1] = 1, establishing that the bound is tight

for the optimal critic.
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Proposition 3 (InfoNCE bound for implicit policy-based BOED). Let θ1:L ∼ p(θ1:L)=
∏
i p(θi) be

a set of contrastive samples where L ≥ 1. For design policy π and critic function U :HT×Θ→R, let

LNCE
T (π, U ;L) := Ep(θ0)p(hT |θ0,π)Ep(θ1:L)

[
log

exp(U(hT , θ0))
1

L+1

∑L
i=0 exp(U(hT , θi))

]
, (8)

then IT (π) ≥ LNCE
T (π, U ;L) for any U and L ≥ 1. Further, the optimal critic, U∗NCE(hT , θ) =

log p(hT |θ, π)+ c(hT ) where c(hT ) is any arbitrary function depending only on the history, recovers
the sPCE bound in (5); the inequality is tight in the limit as L→∞ for this optimal critic.

Proof. Let π : H∗ → Ξ be any (deterministic) policy taking histories ht as inputs and returning a
design ξ as output. Choose any function (critic) U : HT ×Θ→ R.

We introduce the shorthand

g(hT , θ0:L) :=
exp(U(hT , θ0))

1
L+1

∑L
i=0 exp(U(hT , θi))

(49)

Starting with the definition of the unified objective from Equation (6) we multiply its numerator and
denominator by g(hT , θ0:L) > 0 to get

IT (π) = Ep(θ0)p(hT |θ0,π)

[
log

p(hT |θ0, π)

p(hT |π)

]
(50)

where p(θ0)p(hT |θ0, π) ≡ p(θ)p(hT |θ, π)

= Ep(θ0)p(hT |θ0,π)p(θ1:L)

[
log

p(hT |θ0, π)

p(hT |π)

]
(51)

= Ep(θ0)p(hT |θ0,π)p(θ1:L)

[
log

p(hT |θ0, π)g(hT , θ0:L)

p(hT |π)g(hT , θ0:L)

]
(52)

We next split the expectation into two terms one of which does not contain the unknown likelihoods
and equals LNCE

= Ep(θ0)p(hT |θ0,π)p(θ1:L)

[
log

p(hT |θ0, π)

p(hT |π)g(hT , θ0:L)

]

+ Ep(θ0)p(hT |θ0,π)p(θ1:L) [log g(hT , θ0:L)]

= Ep(θ0)p(hT |θ0,π)p(θ1:L)

[
log

p(hT |θ0, π)

p(hT |π)g(hT , θ0:L)

]
+ LNCE(π, U ;L)

(53)

We now show that the first term is a KL divergence and hence non-negative. To see why, first write

Ep(θ0)p(hT |θ0,π)p(θ1:L)

[
log

p(hT |θ0, π)

p(hT |π)g(hT , θ0:L)

]
(54)

= Ep(θ0)p(hT |θ0,π)p(θ1:L)

[
log

p(θ0)p(hT |θ0, π)p(θ1:L)

p(θ0)p(hT |π)p(θ1:L)g(hT , θ0:L)

]
(55)

= Ep(θ0)p(hT |θ0,π)p(θ1:L)

[
log

p(θ0)p(hT |θ0, π)p(θ1:L)

p̂(θ0:L, hT |π)

]
(56)

= KL(p(hT |θ0, π)p(θ0:L)||p̂(θ0:L, hT |π)). (57)

and p̂(θ0:L, hT |π) is a valid distribution since

∫
p̂(θ0:L, hT |π)dθ0:LdhT =

∫
p(θ0)p(hT |π)p(θ1:L)g(hT , θ0:L)dθ0:LdhT (58)

= Ep(θ0)p(hT |θ0,π)p(θ1:L)

[
exp(U(hT , θ0))

1
L+1

∑L
i=0 exp(U(hT , θi))

]
, (59)
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because of the symmetry θ0
d
= θj ∀j = 1, . . . , L

=
1

L+ 1
Ep(θ0)p(hT |θ0,π)p(θ1:L)

[ ∑L
j=0 exp(U(hT , θj))

1
L+1

∑L
i=0 exp(U(hT , θi))

]
(60)

= 1. (61)

Thus we have established

IT (π) = KL(p(hT |θ0, π)p(θ0:L)||p̂(θ0:L, hT |π)) + LNCET (π, U ;L) ≥ LNCET (π, U ;L). (62)

Next, substituting U∗(hT , θ) = log p(hT |θ, π) + c(hT ) in the definition of LNCE(π, U ;L) we
obtain

LNCET (π, U∗;L) = Ep(θ0)p(hT |θ0,π)p(θ1:L)

[
p(hT |θ0, π) exp(c(hT ))

1
L+1

∑L
i=0 p(hT |θi, π) exp(c(hT ))

]
(63)

= Ep(θ0)p(hT |θ0,π)p(θ1:L)

[
p(hT |θ0, π)

1
L+1

∑L
i=0 p(hT |θi, π)

]
, (64)

which is exactly the sPCE bound (5), which is monotonically increasing in L and tight in the limit as
L→∞ [see 17, Theorem 2].

A.4 A note on optimal critics

An interesting feature of our approach is that, for both the InfoNCE and NWJ bounds, the optimal
critics do not depend on the policy. This is because we include the designs as explicit inputs to the
critics. Indeed, we have

U∗NCE(hT , θ) = log

(
T∏

t=1

p(yt|θ, ξt, ht−1)

)
+ c(hT ), (65)

U∗NWJ(hT , θ) = log

( ∏T
t=1 p(yt|θ, ξt, ht−1)∫

Θ
p(θ)

∏T
t=1 p(yt|θ, ξt, ht−1) dθ

)
+ 1. (66)

In previous work that utilized critics for gradient-based BOED [16, 28], it was typical to not treat the
designs ξ1:T as an input to the critic, which renders the optimal critic implicitly dependent on the
designs. This makes more sense for static designs, for which the additional design input does not
change. Our approach avoids an implicit dependence between policy and optimal critic which may
be beneficial for the joint optimization.

B Theoretical Comparison and Additional Bounds

Recently, a number of studies have discussed the challenges of estimating mutual information, an in
particular those associated with variational MI estimators [34, 42, 55].

Starting with the InfoNCE bound, it is trivial to show that the bound cannot exceed log(L+ 1), where
L is the number of contrastive samples used to approximate the marginal in the denominator. Indeed,

LNCET (π, U ;L) = Ep(θ0)p(hT |θ0,π)Ep(θ1:L)

[
log

exp(U(hT , θ0))
1

L+1

∑L
i=0 exp(U(hT , θi))

]
(67)

≤ log(L+ 1) + Ep(θ0)p(hT |θ0,π)Ep(θ1:L)

[
log

exp(U(hT , θ0))

exp(U(hT , θ0))

]
(68)

= log(L+ 1) (69)

This means that the corresponding Monte Carlo estimator will be highly biases whenever the true
mutual information exceeds log(L+ 1), regardless of whether we have access to the optimal critic or
not. This high bias estimator, however, comes with low variance [see e.g. 42, for discussion]. With
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the optimal critic we would require exponential (in the MI) number of samples to accurately estimate
the true mutual information.

It might appear at first that the NWJ bound might offer a better trade-off between bias and variance.
Recall from the proof of Proposition 2, we have for the optimal critic

LNWJ
T (π, U∗) = Ep(θ)p(hT |θ,π)

[
log

p(hT |θ, π)

p(hT |π)

]
+ 1− e−1Ep(θ)p(hT |π)

[
p(hT |θ, π)

p(hT |π)
e1

]
, (70)

of which we form a Monte carlo estimate usingN (M ) samples for the first (second) term, respectively

≈ 1

N

N∑

n=1

log
p(hT,n|θn, π)

p(hT,n|π)
+

(
1− 1

M

M∑

m=1

log
p(hT,m|θm, π)

p(hT,m|π)

)
, (71)

where θn, hT,n ∼ p(θ)p(hT |θ, π) are samples from the joint distribution and θm, hT,m ∼
p(θ)p(hT |π) are samples from the product of marginals. The first term is a Monte Carlo esti-
mate of the mutual information, while the second has mean zero, meaning that this estimator is
unbiased. The second term, however has variance which grows exponentially with the value of the
(true) mutual information [see Theorem 2 in 55]. What this means is that even with an optimal
critic, we will need an exponential (in the MI) number of samples to control the variance of the NWJ
estimator. One might then hope that the variance can be reduced when using a sub-optimal critic
at the cost of introducing some (hopefully small) bias. Unfortunately, according to a recent result
[see Theorems 3.1 and 4.1 in 34, and the discussion therein], it is not possible to guarantee that a
likelihood-free lower bound on the mutual information can exceed log(N). Indeed, the authors show
theoretically and empirically that all high-confidence distribution-free lower bounds on the mutual
information require exponential (in the the MI) number of samples.

Constructing a better lower bound on the mutual information—one that does not need exponential
number of samples—therefore, requires us to make additional assumptions. Foster et al. [17] propose
one such bound, namely the sequential Adaptive Constrative Estimation (sACE). The sACE bound
introduces a proposal distribution q(θ;hT ), which aims to approximate the posterior p(θ|hT ). Since
implicit models were not the focus of the work in [17] the proposed bound, relies on analytically
available likelihood. The following proposition shows we can derive a likelihood-free version of the
sACE bound.

Proposition 4 (Sequential Likelihood-free ACE). For a design function π, a critic function U , a
number of contrastive samples L ≥ 1, and a proposal q(θ;hT ), we have the sequential Likelihood-
free Adaptive Contrastive Estimation (sLACE) lower bound

LsLACE
T (π, U, q;L) := Ep(θ0)p(hT |θ0,π)q(θ1:L;hT )


log

U(hT , θ0)
1

L+1

∑L
`=0

U(hT ,θ`)p(θ`)
q(θ`;hT )


 ≤ IT (π). (72)

The bound is tight as L → ∞ for the optimal critic U∗(hT , θ) = log p(hT |θ, π) + c(hT ), where
c(hT ) is arbitrary. In addition, if q(θ;hT ) = p(θ|hT ), the bound is tight for the optimal critic
U∗(hT , θ) with any L ≥ 0.

Proof. The proof follows similar arguments to the ones in Propositions 2 and 3. First let

g(hT , θ0:L) :=
U(hT , θ0)

1
L+1

∑L
`=0

U(hT ,θ`)p(θ`)
q(θ`;hT )

(73)

Starting with the definition of the EIG:

IT (π) = Ep(θ0)p(hT |θ0,π)

[
log

p(hT |θ0, π)

p(hT |π)

]
(74)

since q(θi;hT ) is a valid density

= Ep(θ0)p(hT |θ0,π)q(θ1:L;hT )

[
log

p(hT |θ0, π)

p(hT |π)

]
(75)
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multiplying its numerator and denominator inside the log by g(hT , θ0:L) > 0

= Ep(θ0)p(hT |θ0,π)q(θ1:L;hT )

[
log

p(hT |θ0, π)g(hT , θ0:L)

p(hT |π)g(hT , θ0:L)

]
(76)

= Ep(θ0)p(hT |θ0,π)q(θ1:L;hT ) [log g(hT , θ0:L)]

+ Ep(θ0)p(hT |θ0,π)q(θ1:L;hT )

[
log

p(hT |θ0, π)

p(hT |π)g(hT , θ0:L)

]
(77)

The first term is exactly the sLACE bound, LsLACE
T (π, U, q;L). We now show that the second term is

a KL divergence between two distribitions and hence non-negative. To see this

Ep(θ0)p(hT |θ0,π)q(θ1:L;hT )

[
log

p(hT |θ0, π)

p(hT |π)g(hT , θ0:L)

]
(78)

= Ep(θ0)p(hT |θ0,π)q(θ1:L;hT )

[
log

p(θ0)p(hT |θ0, π)q(θ1:L;hT )

p(hT |π)g(hT , θ0:L)p(θ0)q(θ1:L;hT )

]
(79)

= KL(p(θ0)p(hT |θ0, π)q(θ1:L;hT )||p̂(hT , θ0:L)), (80)
since p̂(hT , θ0:L) := p(hT |π)g(hT , θ0:L)p(θ0)q(θ1:L;hT ) is a valid density. Indeed:∫

p̂(hT , θ0:L)dhT dθ0:L = Eq(θ1:L;hT )p(hT |π) [p(θ0)g(hT , θ0:L)] (81)

= Eq(θ1:L;hT )p(hT |π)


p(θ0)

U(hT , θ0)
1

L+1

∑L
`=0

U(hT ,θ`)p(θ`)
q(θ`;hT )


 (82)

= Eq(θ0:L;hT )p(hT |π)




U(hT ,θ0)p(θ0)
q(θ0;hT )

1
L+1

∑L
`=0

U(hT ,θ`)p(θ`)
q(θ`;hT )


 (83)

by symmetry

= Eq(θ0:L;hT )p(hT |π)




1
L+1

∑L
`=0

U(hT ,θ`)p(θ`)
q(θ`;hT )

1
L+1

∑L
`=0

U(hT ,θ`)p(θ`)
q(θ`;hT )


 (84)

= 1. (85)

With the optimal critic we recover the sACE bound from [17], which under mild conditions converges
to the mutual information IT (π). To see that start by writing

LsLACE
T (π, U∗, q;L) = Ep(θ0)p(hT |θ0,π)q(θ1:L;hT )


log

p (hT |θ0, π)
1

L+1

∑L
`=0

p(hT |θ`,π)p(θ`)
q(θ`;hT )


 . (86)

The denominator is a consistent estimator of the marginal, provided that each term in the sum is
bounded, and so by the Strong Law of Large Numbers we have

1

L+ 1

L∑

`=0

p (hT |θ`, π) p (θ`)

q (θ`;hT )
→ p(hT |π) a.s. as L→∞, (87)

which establishes point-wise convergence of the integrand to p(hT |θ0, π)/p(hT |π). We can apply
Bounded convergence theorem to establish LsACE

T (π, U∗, q;L)→ IT (π) as L→∞.

If in addition q(θ;hT ) = p(θ|hT ) we have by Bayes rule:

LsLACE
T (π, U∗, q;L) = Ep(θ0)p(hT |θ0,π)p(θ1:L|hT )


log

p(hT |θ0, π)
1

L+1

∑L
`=0

p(hT |θ`,π)p(θ`)
p(θ`|hT )


 (88)

= Ep(θ0)p(hT |θ0,π)p(θ1:L|hT )

[
log

p(hT |θ0, π)
1

L+1

∑L
`=0 p(hT |π)

]
(89)

= Ep(θ0)p(hT |θ0,π)

[
log

p(hT |θ0, π)

p(hT |π)

]
(90)

= IT (π) ∀L ≥ 0. (91)
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In practice, we parameterize the policy, the critic and the density of the proposal distribution by
neural networks πφ, Uψ and qζ and optimize LsLACE

T with respect to the parameters of these networks,
φ, ψ and ζ with SGA. As before, optimizing with respect to φ improves the quality of the designs,
proposed by the policy, whilst optimizing with respect to ψ and ζ tightens the bound. If the parametric
density qζ and the critic Uψ are expressive enough, so that we can recover the optimal critic and the
true posterior, then the bound is tight for any number of contrastive samples L. If, on the other hand,
we fix qζ(θ;hT ) = p(θ) instead of training it, then we recover the InfoNCE bound. Therefore, as
long as qζ approximates the posterior better than the prior, then even an imperfect proposal qζ can
benefit training.

In addition to introducing another set of optimizable parameters, ζ, the sLACE bound assumes that
we know the prior p(θ) and can evaluate its density.

C Neural architecture

C.1 Permutation invariance of the critic for exchangeable experiments

We show that if the BOED problem is exchangeable then the critic function U should be permutation-
invariant.
Proposition 5 (Permutation invariance). Let σ be a permutation acting on a history h1

T yielding
h2
T = {(ξσ(i), yσ(i))}Ti=1. If the data generating process is conditionally independent of its past given
θ, then the optimal critics for both (7) and (8) are invariant under permutations of the history, i.e.

p(θ)

T∏

t=1

p(yt|θ, ξt(ht−1), ht−1) = p(θ)

T∏

t=1

p(yt|θ, ξt) =⇒ U∗(h1
T , θ) = U∗(h2

T , θ). (92)

Proof. This is a direct consequence from the form of the optimal critics. To see this formally, let h1
T

be a history and h2
T be a permutation of it.

Starting with the InfoNCE bound we have
U∗NCE(h1

T , θ) = log p(h1
T |θ, π) + c(h1

T ) (93)

= log
T∏

t=1

p(yt|θ, ξt) + c({(ξt, yt)}Tt=1) (94)

since c(hT ) is arbitrary, we can choose it to be permutation invariant

= log
T∏

t=1

p(yσ(t)|θ, ξσ(t)) + c({(ξσ(t), yσ(t))}Tt=1) (95)

= log p(h2
T |θ, π) + c(h2

T ) (96)

= U∗NCE(h2
T , θ) (97)

Similarly, for the optimal critic of the NWJ bound we have

U∗NWJ(h
1
T , θ) = log

p(h1
T |θ, π)

p(h1
T |π)

+ 1 (98)

= log

∏T
t=1 p(yt|θ, ξt)

Ep(θ)
[∏T

s=1 p(ys|θ, ξs)
] + 1 (99)

= log

∏T
t=1 p(yσ(t)|θ, ξσ(t))

Ep(θ)
[∏T

s=1 p(yσ(s)|θ, ξσ(s))
] + 1 (100)

= log
p(h2

T |θ, π)

p(h2
T |π)

+ 1 = U∗NWJ(h
2
T , θ). (101)
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Figure 6: History encoder architectures for different classes of models. When conditional indepen-
dence of the experiments holds, we use self-attention, followed by sum-pooling, making the history
encoder permutation invariant. When experiments are not conditionally independent we use LSTM
and only keep its last hidden state. We train two separate history encoders—one for the design
network πφ and one for the critic network Uψ , although we note that all the weights except those in
the head layers can be shared.

To the best of our knowledge, we are the first to propose a critic architecture that is tailored to
BOED problems with exchangeable models. Previous work in the static BOED setting, where MI
information objective is optimized with variational lower bounds and thus require the training of
critics [e.g. 28, 63], did not discuss what an appropriate critic architecture might be. In particular,
in all experiments [28, 63] use a generic architecture for both exchangeable and non-exchangeable
problems. An expressive enough generic architecture should be able to obtain the optimal critic, and
thus achieve a tight bound, however, the optimisation process will be considerably more difficult as
the network needs to learn this key invariance structure. We therefore recommend using permutation
invariant architectures whenever the model is exchangeable, especially if achieving tight bounds (and
therefore learning an optimal critic) is of importance.

C.2 Further details on the history encoder

Figure 6 shows the history encoders we use in the policy network πφ and the critic network Uψ . First,
we encode the individual design-outcome pairs, (ξt, yt), with an MLP, which gives us a vector of
representations rt ∈ Rm, where m is the encoding dimension we have selected. The representations
{ri}ti=1 are row-stacked into a matrix R of dimension t ×m, which we then aggregate back to a
vector of size m by an appropriate layer(s).

When conditional independence of the experiments holds, we apply 8-head self-attention, based
on the Image Transformer [40] and as implemented by [14]. Applying self-attention leaves the
dimension of the matrix R unchanged. We then apply sum-pooling across time t, which gives us the
final encoding vector E ∈ Rm.

When experiments are not conditionally independent, we pass the matrix R though an LSTM with
two hidden layers and hidden state of size m (see the LSTM module in Pytorch for more details).
The LSTM returns hidden state vectors associated with the history ht for each t; we keep the last
hidden state of the last layer, which is our final encoding vector E ∈ Rm.

In both cases the resulting encoding E is a vector of size m. It is passed through final fully connected
"head" layers, which output either a design (in the case of the policy) or a vector (in the case of the
critic). We train two separate history encoders—one for the design network πφ and one for the critic
network Uψ , although we note that all the weights except those in the head layers can be shared.

D Experiments

D.1 Computational resources

All of the experiments were implemented in Python using open-source software. All estimators and
models were implemented in PyTorch [41] (BSD license) and Pyro [6] (Apache License Version 2.0),
whilst MlFlow [61] (Apache License Version 2.0) was used for experiment tracking and management.
The self-attention architecture from [14] was used to implement the self-attention mechanisms in the
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design and critic networks. For full details on package versions, environment set-up and commands
for running the code, see instructions in the README.md file.

Experiments were ran on internal GPU clusters, consisting of GeForce RTX 3090 (24GB memory),
GeForce RTX 2080 Ti (11GB memory) and GeForce GTX 1080 Ti GPUs (11GB memory).

The deployment-time of iDAD (Table 4) was estimated on a lightweight CPU machine with the
following specifications

Processor 2.8 GHz Quad-Core Intel Core i7
Memory 16 GB
Operating system macOS Big Sur v11.2.3

D.2 CO2 Emission Related to Experiments

Experiments were conducted using a private infrastructure, which has an estimated carbon efficiency
of 0.432 kgCO2eq/kWh. A cumulative of 160 hours of computation was performed on hardware
of type RTX 2080 Ti (TDP of 250W), or similar. The training time of each experiment (including
the baselines that require optimization), took on average between 1-3 GPU hours, depending on the
number of experiments T .

Total emissions are estimated to be 17.28 kgCO2eq of which 0% was directly offset.

Estimations were conducted using the Machine Learning Impact calculator presented in [31].

D.3 Traditional sequential BOED with variational posterior estimator

The variational posterior estimator from [15] is based on the Barbar-Agakov lower bound [4], which
takes the form

Lpost(ξ, qψ) = Ep(θ)p(y|θ,ξ)
[
log

qψ(θ; y, ξ)

p(θ)

]
≤ I(ξ), (102)

where qψ is any normalized distribution over the parameters θ. The bound is tight when qψ(θ; y, ξ) =
p(θ|y, ξ), i.e. if we can recover the true posterior. We assume mean-field variational family and
optimize the parameters ψ by maximizing the bound (102) using stochastic gradient schemes.
Simultaneously we optimize the bound with respect to the design variable ξ to select the optimal
design ξ∗. At the inference stage, denoting by y∗ the outcome of experiment ξ∗, we obtain an
approximate posterior by evaluating qψ(θ; y∗, ξ∗), i.e. we reuse the learnt variational posterior. We
repeat this process at each stage of the experiments by substituting the the approximate posterior,
qψ(θ; y∗, ξ∗), as the prior in (102).

D.4 Location Finding

In this experiment we have K hidden objects (sources) in R2 and we wish to learn their locations,
θ = {θ1, . . . , θK}. The number of sources, K, is assumed to be known. Each source emits a
signal with intensity obeying the inverse-square law. Put differently, if a source is located at θk
and we perform a measurement at a point ξ, the signal strength emitted from that source only
will be proportional to 1

‖θk−ξ‖2 . The total intensity at location ξ, emitted from all K sources, is a
superposition of the individual ones

µ(θ, ξ) = b+
K∑

k=1

αk
m+ ‖θk − ξ‖2

, (103)

where αk can be known constants or random variables, b > 0 is a constant background signal and m
is a constant, controlling the maximum signal.

We place a standard normal prior on each of the location parameters θk and we observe the log-total
intensity with some Gaussian noise. We therefore have the following prior and likelihood:

θk
i.i.d.∼ N (0d, Id) log y | θ, ξ ∼ N (logµ(θ, ξ), σ2) (104)
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D.4.1 Training details

All our experiments are performed with the following model hyperparameters

Parameter Value

Number of sources, K 2
αk 1 ∀k
Max signal, m 10−4

Base signal, b 10−1

Observation noise scale, σ 0.5

The architecture of the design network πφ used in Table 2 and all its hyperparameters are in the
following tables. For the encoder of the design-outcome pairs we used the following:

Layer Description iDAD, InfoNCE iDAD, NWJ Activation

Input ξ, y 3 3 -
H1 Fully connected 64 64 ReLU
H2 Fully connected 512 512 ReLU
Output Fully connected 64 64 -
Attention 8 heads 64 64 -

The output of the encoder, R(ht), is fed into an emitter network, for which we used the following:

Layer Description iDAD, InfoNCE iDAD, NWJ Activation

Input R(ht) 64 64 -
H1 Fully connected 256 256 ReLU
H2 Fully connected 64 64 ReLU
Output Fully connected 2 2 -

The architecture of the critic network Uψ used in Table 2 and all its hyperparameters are in the tables
that follow. First, the encoder network of the latent variables is:

Layer Description iDAD, InfoNCE iDAD, NWJ Activation

Input θ 4 4 -
H1 Fully connected 16 16 ReLU
H2 Fully connected 64 64 ReLU
H3 Fully connected 512 512 ReLU
Output Fully connected 64 64 -

For the design-outcome pairs encoder we use the same architecture as in the design network, namely:

Layer Description iDAD, InfoNCE iDAD, NWJ Activation

Input ξ, y 3 3 -
H1 Fully connected 64 64 ReLU
H2 Fully connected 512 512 ReLU
Output Fully connected 64 64 -
Attention 8 heads 64 64 -

The output of the encoder, R(ht), is fed into fully connected head layers:

Layer Description iDAD, InfoNCE iDAD, NWJ Activation

Input R(ht) 64 64 -
H1 Fully connected 1024 1024 ReLU
H2 Fully connected 512 512 ReLU
H3 Fully connected 512 512 ReLU
Output Fully connected 64 64 -

The optimisation was performed with Adam [26] with ReduceLROnPlateau learning rate scheduler,
with the following hyperparameters:
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Figure 7: a): EIG surface induced by the prior; b) Samples from p(θ|ξ1, y1)—the posterior distribution
of the locations, after performing experiment ξ1 and observing y1, along with a KDE.

Parameter iDAD, InfoNCE iDAD, NWJ

Batch size 2048 2048
Number of contrastive/negative samples 2047 2047
Number of gradient steps 100000 100000
Initial learning rate (LR) 0.0005 0.0005
LR annealing factor 0.8 0.8
LR annealing frequency (if no improvement) 2000 2000

D.4.2 Performance of the variational baseline

As we saw in Table 2, this variational approach to (myopic) adaptive BOED performed very poorly,
despite its large computational budget. The likely reason for that is that the mean-field variational
approximation cannot adequately capture the complex non-Gaussian posterior of this problem.
Figure 7 clearly demonstrates this: before any data is observed it is optimal to sample at the origin
(since the prior is centered at it). After observing a low signal (the locations in this example are not
close to the origin), we can only conclude that the sources are not within a small radius of the origin,
but anywhere outside of it would be a plausible location, as indeed indicated by the fitted posteriors.

D.4.3 Hyperparameter selection

We did not perform extensive hyperparameters search; in particular, the network sizes were guided
by two hyperparametes: hidden-dimension (HD = 512) and encoding dimension (ED = 64). We
set-up all the networks to scale up with the number of experiments as follows:

• Design-outcome encoder has three hidden layers of sizes [64, HD,ED].

• Design emitter network has three hidden layers of sizes [HD/2, ED, 2], where 2 is the
dimension of the design variable.

• The latent encoder for the critic network has four hidden layers of sizes [16, 64, HD,ED].

• The critic design-outcome encoder’s head layer has four hidden layers of sizes [HD ×
log(T ), HD × log(T )/2, HD,ED].

Since our multi-head attention layer has 8 heads, the encoding dimension we use has to be a multiple
of 8. In addition to ED = 64 we tried ED = 32 which provided marginally worse results. We did
not try other values for these hyperparameters.

For the learning rate, we tried 0.001, which was too high, as well as 0.0005 (which we selected) and
0.0001 (which yielded very similar results).

We performed similar level of hyperparameter tuning for all trainable baselines as well (DAD,
MINEBED and SG-BOED).
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Table 6: Upper bounds on the total information, I10(π), for the location finding experiment in
Section 5.1. The bounds were estimated using L = 5× 105 contrastive samples. Errors indicate ±1
s.e. estimated over 4096 histories (128 for variational). Lower bounds are presented in Table 2.

Method \ θ dim. 4D 6D 10D 20D
Random 4.794 ± 0.041 3.506 ± 0.004 1.895 ± 0.003 0.552 ± 0.001
MINEBED 5.522 ± 0.028 4.229 ± 0.029 2.459 ± 0.029 0.801 ± 0.019
SG-BOED 5.549 ± 0.028 4.220 ± 0.030 2.455 ± 0.029 0.803 ± 0.019
Variational 4.644 ± 0.146 3.626 ± 0.167 2.181 ± 0.152 0.669 ± 0.097
iDAD (NWJ) 7.806 ± 0.050 5.851 ± 0.041 3.264 ± 0.039 0.877 ± 0.022
iDAD (InfoNCE) 7.863 ± 0.043 6.068 ± 0.039 3.257 ± 0.040 0.872 ± 0.020
DAD 8.034 ± 0.038 6.310 ± 0.031 3.358 ± 0.040 0.953 ± 0.022

Table 7: Upper and lower bounds on the total information, I20(π), for the location finding experiment
in 2D from Section 5.1. The bounds were estimated using L = 5× 105 contrastive samples. Errors
indicate ±1 s.e. estimated over 4096 histories.

Method Lower bound Upper bound
Random 7.000 ± 0.034 7.020 ± 0.034
MINEBED 7.672 ± 0.030 7.690 ± 0.031
SG-BOED 7.701 ± 0.030 7.728 ± 0.031
iDAD (NWJ) 9.961 ± 0.033 10.372 ± 0.048
iDAD (InfoNCE) 10.075 ± 0.032 10.463 ± 0.043
DAD 10.424 ± 0.031 10.996 ± 0.049

D.4.4 Further ablation studies

Scalability with number of experiments. We first demonstrate that iDAD can scale to a larger
number of experiments T . We train policy networks to perform T = 20 experiments and compare
them to baselines in Table 7. We omit the variational baseline as it is too computationally costly
to run for a large enough number of histories, and as we saw in the previous subsection, it is not
particularly suited to this model.

Training stability. To assess the robustness of the results and the stability of the training process,
we trained 5 additional iDAD networks with each of the two bounds, using different seeds but the
same hyperparameters (described in Subsection D.4.1) we used to produce the results of the location
finding experiment in 2D (Table 2 in the main text). We report upper and lower bounds on the mutual
information along with their mean and standard error in the table below.

Estimator Bound Run 1 Run 2 Run 3 Run 4 Run 5 Mean SE
InfoNCE Lower 7.826 7.682 7.856 7.713 7.804 7.776 0.034
InfoNCE Upper 7.933 7.791 7.856 7.807 7.925 7.862 0.029
NWJ Lower 7.820 7.545 7.592 7.555 7.691 7.641 0.052
NWJ Upper 7.976 7.640 7.669 7.651 7.800 7.747 0.064

We can see that the iDAD networks trained with InfoNCE are highly stable, with the 5 additional runs
achieving very similar mutual information values to each other and to the iDAD network used the
report the results in the main paper. The performance of the iDAD networks trained with the NWJ
bound is more variable and empirically achieve slightly lower average value of mutual information.
This higher variance is in-line with the discussion in Section B.

We similarly verify the robustness of the static baselines, reporting the results in the table below:
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Table 8: Ablation study on the performance of iDAD as a function of training time for the location
finding experiment.

Training budget MI lower bound

0.1% 3.38
1.0% 6.09
2.0% 6.46
4.0% 6.81
8.0% 7.08
16.0% 7.33
32.0% 7.56
64.0% 7.78
100.0% 7.82

Estimator Bound Run 1 Run 2 Run 3 Run 4 Run 5 Mean SE
SG-BOED Lower 5.537 5.536 5.473 5.523 5.518 5.517 0.013
SG-BOED Upper 5.553 5.548 5.491 5.541 5.531 5.533 0.012
MINEBED Lower 5.460 5.506 5.553 5.539 5.565 5.524 0.021
MINEBED Upper 5.473 5.526 5.567 5.554 5.574 5.540 0.022

Performance sensitivity to errors in the policy. Finally, we investigate the effect of slight errors
in the design policy network. To this end, we look at the performance achieved by partially trained
design networks (there will be some errors or inaccuracies in networks that were not trained until
convergence). Table 8 shows the performance of iDAD as a function of training time, demonstrating
that small errors in the network only lead to small drops in performance.

In detail, our results show that with just 8% of the total training budget, this slightly inaccurate
network still performs relatively well, achieving total mutual information of 7.1, compared to the
fully trained network that reached 7.8. We also highlight that iDAD outperforms all baselines with as
little as 1% of the total training budget (the best performing baseline achieves mutual information of
5.5, see Table 2).

D.5 PK model

The drug concentration z, measured ξ hours after administering it, and the corresponding noisy
observation y are given by

z(ξ; θ) =
DV

V

kα
kα − ke

[e−keξ − e−kαξ], y(ξ; θ) = z(ξ; θ)(1 + ε) + η (105)

where θ = (kα, ke, V ), DV = 400 is a constant, ε ∼ N (0, 0.01) is multiplicative noise to account
for heteroscedasticity and η ∼ N (0, 0.1) is an additive observation noise. Since both noise sources
are Gaussian, the observation likelihood is also Gaussian i.e.

y(ξ; θ) ∼ N (z(ξ; θ), 0.01z(ξ; θ)2 + 0.1) (106)

The prior for the parameters θ that we used

log θ ∼ N
([

log 1
log 0.1
log 20

]
,

[
0.05 0 0

0 0.05 0
0 0 0.05

])
(107)

D.5.1 Training details

The architecture of the design network πφ used for Figure 3 and 4 and all its hyperparameters are in
the following tables. For the encoder of the design-outcome pairs we used the following:
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Layer Description iDAD, InfoNCE iDAD, NWJ Activation

Input ξ, y 2 2 -
H1 Fully connected 64 64 ReLU
H2 Fully connected 512 512 ReLU
Output Fully connected 32 32 -
Attention 8 heads 32 32 -

The outputs of the encoder, {R(ht)}Tt=1, are summed and the resulting vector (of dimension 32) is
fed into an emitter network, for which we used the following:

Layer Description iDAD, InfoNCE iDAD, NWJ Activation

Input R(ht) 32 32 -
H1 Fully connected 256 256 ReLU
H2 Fully connected 32 32 ReLU
Output Fully connected 1 1 Sigmoid

The architecture of the critic network Uψ used in Figures 3 and 4 and all its hyperparameters are in
the following tables. For the encoder of the design-outcome pairs we used the same architecture as
for the design network, namely:

Layer Description iDAD, InfoNCE iDAD, NWJ Activation

Input ξ, y 2 2 -
H1 Fully connected 64 64 ReLU
H2 Fully connected 512 512 ReLU
Output Fully connected 32 32 -
Attention 8 heads 32 32 -

The resulting pooled representation, R(hT ) is fed into fully connected critic head layers with the
following architecture:

Layer Description iDAD, InfoNCE iDAD, NWJ Activation

Input R(hT ) 32 32 -
H1 Fully connected 512 512 ReLU
H2 Fully connected 256 256 ReLU
H3 Fully connected 512 512 ReLU
Output Fully connected 32 32 -

Finally, for the latent variable encoder network we used:

Layer Description iDAD, InfoNCE iDAD, NWJ Activation

Input θ 3 3 -
H1 Fully connected 8 8 ReLU
H2 Fully connected 64 64 ReLU
H3 Fully connected 512 512 ReLU
Output Fully connected 32 32 -

The optimisation was performed with Adam [26] with the following hyperparameters:

Parameter iDAD, InfoNCE iDAD, NWJ

Batch size 1024 1024
Number of contrastive/negative samples 1023 1023
Number of gradient steps 100000 100000
Initial learning rate (LR) 0.0001 0.0001
LR annealing factor 0.8 0.5
LR annealing frequency (if no improvement) 2000 2000
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Table 9: Upper and lower bounds on the total information, I5(π), for the pharmacokinetic experiment.
Errors indicate ±1 s.e. estimated over 4096 (126 for variational) histories and L = 5× 105.

Method Lower bound Upper bound Deployment time
Random 2.523 ± 0.033 2.523 ± 0.033 N/A
Equal interval 2.651 ± 0.022 2.651 ± 0.022 N/A
MINEBED 2.955 ± 0.030 2.956 ± 0.030 N/A
SG-BOED 2.985 ± 0.027 2.985 ± 0.027 N/A
Variational 2.683 ± 0.093 2.683 ± 0.093 505.4 ± 1%
IDAD (NWJ) 3.163 ± 0.023 3.163 ± 0.023 0.007 ± 7%
IDAD (InfoNCE) 3.200 ± 0.024 3.200 ± 0.024 0.007 ± 8%

DAD 3.234 ± 0.023 3.234 ± 0.023 0.002 ± 7%

Table 10: Upper and lower bounds on the total information, I10(π), for the pharmacokinetic experi-
ment. Errors indicate ±1 s.e. estimated over 4096 (126 for variational) histories and L = 5× 105.

Method Lower bound Upper bound Deployment time
Random 3.344 ± 0.034 3.345 ± 0.034 N/A
Equal interval 3.422 ± 0.026 3.423 ± 0.026 N/A
MINEBED 3.849 ± 0.034 3.849 ± 0.034 N/A
SG-BOED 3.824 ± 0.034 3.824 ± 0.034 N/A
Variational 3.624 ± 0.099 3.624 ± 0.099 1055.2 ± 8%
IDAD (NWJ) 4.034 ± 0.025 4.034 ± 0.025 0.007 ± 6%
IDAD (InfoNCE) 4.045 ± 0.026 4.045 ± 0.026 0.007 ± 5%

DAD 4.116 ± 0.024 4.117 ± 0.024 0.007 ± 8%

D.5.2 Hyperparameter selection

Hyperparameter selection was done in a way similar to the Location Finding experiment (see D.4.3).
We tried encodin dimensions ED = 32, 64 and selected the smaller size as there were no clear
benefits to larger networks (relatively speaking, this is an easier model that the location finding). We
used the same hidden dimension, i.e. HD = 512. In terms of learning rates, we tried 0.0001, 0.0005
and 0.001; we found 0.0001 to be appropriate, although NWJ bound was exhibiting high variance, so
used a smaller learning rate annealing factor for that network (0.5 vs 0.8 for InfoNCE). We performed
similar level of hyperparameter tuning for all trainable baselines as well (DAD, MINEBED and
SG-BOED).

D.5.3 Further results

Table 9 reports the results shown in Figure 3c), along with the corresponding upper bounds and
deployment times, while Table 10 reports the results for T = 10.

Training stability. To assess the robustness of the results and the stability of the training process, we
trained 5 additional iDAD networks with each of the two bounds, using different seeds but the same
hyperparameters we used to produce the results of the pharmacokinetic experiment (Figure 3c) and
corresponding Table 9). We report upper and lower bounds on the mutual information along with
their mean and standard error in the table below.

Method Bound Run 1 Run 2 Run 3 Run 4 Run 5 Mean SE
iDAD, InfoNCE Lower 3.209 3.165 3.198 3.221 3.128 3.185 0.019
iDAD, InfoNCE Upper 3.210 3.166 3.201 3.223 3.130 3.186 0.019
iDAD, NWJ Lower 3.034 3.049 2.608 3.149 3.082 3.034 0.107
iDAD, NWJ Upper 3.034 3.049 2.609 3.150 3.083 3.034 0.107

We repeat the same procedure for the static baselines. The results reported in the table below
demonstrate the training stability of these baselines as well.
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Method Bound Run 1 Run 2 Run 3 Run 4 Run 5 Mean SE
SG-BOED Lower 2.932 2.452 2.448 2.991 2.962 2.757 0.140
SG-BOED Upper 2.932 2.453 2.449 2.992 2.962 2.757 0.140
MINEBED Lower 2.912 2.213 3.014 2.092 2.941 2.634 0.221
MINEBED Upper 2.914 2.213 3.015 2.092 2.942 2.635 0.222

D.6 SIR Model

Generally speaking, the SIR model advocates that, within a fixed population of size N , susceptible
individuals S(τ), where τ is time, can become infected and move to an infected state I(τ). The
infected individuals can then recover from the disease and move to the recovered state R(τ). The
dynamics of these events are governed by the infection rate β and recovery rate γ, which define the
particular disease in question. In the context of BOED, the aim is generally to estimate these two
model parameters by observing state populations at particular measurement times τ , which are the
experimental design variables. The SIR model has been studied extensively in the context of BOED,
e.g. in [12, 27, 29, 30].

Stochastic versions of the SIR model are usually formulated via continuous-time Markov chains
(CTMC), which can be simulated from via the Gillespie algorithm [2], yielding discrete state
populations. However, iDAD requires us to differentiate through the sampling path of the state
populations to the experimental designs, which is impossible if the simulated data is discrete as
gradients are undefined. Thus, we here implement an alternative formulation of the stochastic SIR
model that is based on stochastic differential equations (SDEs), as studied in [29], which yields
continuous state populations that can be differentiated.

Following [29], let us first define a state population vector X(τ) = (S(τ), I(τ))>, where we can
safely ignore the population of recovered R(τ) for modelling purposes because we assume that the
total population stays fixed. The system of Itô SDEs that defines the stochastic SIR model is given by

dX(τ) = f(X(τ))dτ + G(X(τ))dW(τ), (108)

where f is a drift vector, G is a diffusion matrix and W(τ) is a vector of independent Wiener
processes. [29] showed that the drift vector and diffusion matrix are given by

f(X(τ)) =




−β S(τ)I(τ)
N

β S(τ)I(τ)
N − γI(τ)


 and G(X(t)) =




−
√
β S(τ)I(τ)

N 0

√
β S(τ)I(τ)

N −
√
γI(τ)


 . (109)

Given the system of Itô SDEs in (108), as well as the above drift vector and diffusion matrix, we
can then simulate state populations X(τ) by solving the SDE using finite-difference methods, such
as e.g. the Euler-Maruyama method. See [29] for more information on the SDE-based SIR model,
including derivations of the drift vector and diffusion matrix.

Importantly, we note that [29] further used the solutions of (108) as an input to a Poisson observation
model, which increases the noise in simulated data. We here opt to simply use the solutions of (108)
as data and do not consider an additional Poisson observational model.

D.6.1 Training details

As previously mentioned, the design variable for this model is the measurement time τ ∈ [0, 100].
When solving the SDE with the Euler-Maruyama method, we discretize the time domain with a
resolution of ∆τ = 10−2. We here only use the number of infected I(τ) as the observed data, as
others might be difficult to measure in reality. The total population is fixed at N = 500 and the
initial conditions are X(τ = 0) = (0, 2)>. The model parameters β and γ have log-normal priors,
i.e. p(β) = Lognorm(0.50, 0.502) and p(γ) = Lognorm(0.10, 0.502). Importantly, because solving
SDEs is expensive, we pre-simulate our data on a time grid, store it in memory and then access the
relevant data during training.

We present the network architectures and hyper-parameters corresponding to the T = 5 iDAD results
shown in Table 5 of the main text. For the encoder of the design-outcome pairs we used:
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Layer Description iDAD, InfoNCE iDAD, NWJ Activation

Input ξ, y 2 2 -
H1 Fully connected 8 8 ReLU
H2 Fully connected 64 64 ReLU
H3 Fully connected 512 512 ReLU
Output Fully connected 32 32 -

The resulting representations, {R(ht)}T−1
t=1 , are stacked into a matrix (as new design–outcome pairs

are obtained) and fed into an emitter network, which contains an LSTM cell with two hidden layers.
We only keep the last hidden state of the LSTM’s output and pass it through a final FC layer:

Layer Description iDAD, InfoNCE iDAD, NWJ Activation

Input {R(ht)}T−1
t=1 32 × t 32 × t -

H1 & H2 LSTM 32 32 -
H3 Fully connected 16 16 ReLU
Output Fully connected 1 1 -

The architecture of the critic network Uψ used in Table 5 and all its hyper-parameters are in the tables
that follow. First, the encoder network of the latent variables is:

Layer Description iDAD, InfoNCE iDAD, NWJ Activation

Input θ 2 2 -
H1 Fully connected 8 8 ReLU
H2 Fully connected 64 64 ReLU
H3 Fully connected 512 512 ReLU
Output Fully connected 32 32 -

For the design-outcome pairs encoder we use the same architecture as in the design network, namely:

Layer Description iDAD, InfoNCE iDAD, NWJ Activation

Input ξ, y 2 2 -
H1 Fully connected 8 8 ReLU
H2 Fully connected 64 64 ReLU
H3 Fully connected 512 512 ReLU
Output Fully connected 32 32 -

The outputs of the encoder, {R(ht)}t, are stacked and fed into an LSTM cell with two hidden layers.
We only keep the last hidden state of the LSTM’s output and pass it through a FC layer:

Layer Description iDAD, InfoNCE iDAD, NWJ Activation

Input {R(ht)}T−1
t=1 32 × t 32 × t -

H1 & H2 LSTM 32 32 -
H3 Fully connected 16 16 ReLU
Output Fully connected 32 32 -

The optimization was performed with Adam [26] with learning rate annealing with the following
hyper-parameters:

Parameter iDAD InfoNCE iDAD, NWJ

Batch size 512 512
Number of contrastive/negative samples 511 511
Number of gradient steps 100000 100000
Initial learning rate (LR) 0.0005 0.0005
LR annealing factor 0.96 0.96
LR annealing frequency 1000 1000
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Figure 8: Approximate posteriors for the SIR model.

D.6.2 Further results

Different number of experiments T . In Table 11 we show lower bound estimates when applying
iDAD with the InfoNCE lower bound to the SDE-based SIR model for different number of measure-
ments T . The design network and critic architectures are the same as for T = 5. Table 11 shows
that more measurements yield higher expected information gains, as one might intuitively expect.
Furthermore, the increase in expected information gain saturates with increasing T , which is why we
presented the results for T = 5 in the main text. The biggest increase, however, occurs from T = 1 to
T = 2. This is intuitive, because the SIR model has two model parameters that we wish to estimate
but we only gather one data point with one measurement. Hence, in order to accurately estimate both
of these parameters, we would need at least 2 measurements, which is reflected in Table 11. We note
that all of these numbers, with the exception of T = 1, are larger than those found by [29]. This
increase in expected information gain may be explained by the fact that [29] use an additional Poisson
observation model, which means that the resulting data are inherently noisier and less informative.

Table 11: InfoNCE lower bound estimates (± s.e.) when applying iDAD to the SDE-based SIR
model for different number of measurements T .

T iDAD, InfoNCE iDAD, NWJ
1 1.396 ± 0.018 1.417 ± 0.001
2 2.714 ± 0.019 2.699 ± 0.001
3 3.554 ± 0.021 3.515 ± 0.001
4 3.600 ± 0.018 3.749 ± 0.001
5 3.915 ± 0.020 3.869 ± 0.001
7 4.027 ± 0.019 3.911 ± 0.001

10 4.100 ± 0.020 4.019 ± 0.001

Training stability. To assess the robustness of the results and the stability of the training process, we
trained 5 additional iDAD networks with each of the two bounds, using different seeds but the same
hyperparameters we used to produce the results of Table 5 in the main text. We report upper and
lower bounds on the mutual information along with their mean and standard error in the table below.

Method Bound Run 1 Run 2 Run 3 Run 4 Run 5 Mean SE
iDAD, InfoNCE Lower 3.900 3.919 3.919 3.901 3.887 3.906 0.007
iDAD, NWJ Lower 3.872 3.838 3.854 3.883 3.848 3.859 0.009

We repeat the same procedure for the static baselines. The results reported in the table below
demonstrate the training stability of these baselines as well.

Method Bound Run 1 Run 2 Run 3 Run 4 Run 5 Mean SE
SG-BOED Lower 3.713 3.765 3.767 3.764 3.739 3.749 0.012
MINEBED Lower 3.373 3.438 3.376 3.379 3.420 3.397 0.015
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Chapter 7

Discussion

This discussion is broken into a number of self-contained essays that delve into specific aspects of the

concepts laid out in the earlier chapters. In Section 7.1, we focus on elucidating the ideas of Chapters 2

and 3 by focusing on the specific example use case of Bayesian model selection. We examine how the

variational estimators of Chapter 2 look in this example, highlighting connections to other work, we also

note how the approach of Chapter 3 translates to this specific case. In Section 7.2, we focus on comparing

our work, particularly the estimators of Chapter 3 to work in the field of Bayesian active learning,

drawing out the deep connections between experimental design and active learning. In Section 7.3, we

draw another connection, this time between the sequential experiment methods in Chapters 5 and 6 and

the field of Bayesian reinforcement learning. We show that reinforcement learning provides a natural

language to express the sequential experimental design problem. In Section 7.4, we investigate some of

the statistical properties of various estimators discussed in this thesis. We focus on the NMC estimator,

the PCE estimator introduced in Chapter 3. We connect these more basic estimators with MLMC

estimators, creating a stronger connection between earlier chapters and Chapter 4. In Section 7.5, we

present new results on mutual information bounds. This can be seen a generalising theory for some of

the bounds derived in Chapters 2, 3, 5 and 6. We conclude with a discussion of limitations of our work

in Section 7.6.
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7.1 Bayesian experimental design for model selection: variational

and classification approaches

7.1.1 Introduction

Bayesian experimental design for model selection is a important and well-studied problem (Cavagnaro

et al., 2010; Vanlier et al., 2014; Hainy et al., 2018). In this essay, we tackle two questions that are relevant

to this problem. First, how do recently proposed variational methods for experimental design (Foster

et al., 2019, 2020) translate into the model selection context? Second, how do these methods intersect

with recently proposed classification-driven approaches to experimental design for model selection (Hainy

et al., 2018)?

We begin by elucidating the key features of the model selection problem—it turns out that we can

characterise the set-up as a semi-implicit model with a discrete latent variable of interest. The posterior

or Barber–Agakov approach of Foster et al. (2019) involves training an amortised inference network from

data simulated from the model. We find that, for model selection, this network is exactly a (neural)

classifier that predicts the true model that synthesised an observation from that synthetic experimental

observation. The marginal + likelihood method of Foster et al. (2019) also translates into the model

selection case. This method involves variational density estimation of experimental outcomes for each

possible model. In other words, it involves approximating the model evidence of the data for each

possible model. Finally, we examine how the stochastic gradient design approach of Foster et al. (2020)

applies here. This approach can build off the back of the Barber–Agakov bound, so it also utilises a

classifier. The key difference here is that we differentiate the classifier output with respect to its input

to learn the design at the same time as the classifier network parameters. This bears some similarities

with adversarial approaches to neural network robustness (Carlini et al., 2019). Finally, we compare and

contrast the variational approach with other classification driven approaches in the literature.

7.1.2 Characterising the problem

We denote experimental designs by ξ and experimental observations as y. Suppose there areK competing

models {m1, . . . ,mk} and we have a prior distribution p(m) on which model we think is likely to be

correct. Given the choice of model, there are other model parameters ψ ∼ p(ψ|m). Conditional on the

model, and on its parameters, we have a likelihood for the experiment p(y|m,ψ, ξ) which we assume is

known in closed form.

One important feature of the model selection problem is that we do not have a likelihood that directly

relates the design ξ, observation y and the latent variable of interest m. Instead, we have to account for

the auxiliary latent variable ψ. Indeed, we actually have p(y|m, ξ) =
∫

Ψ
p(y|m,ψ, ξ)p(ψ|m)dψ. This case,

where we have a closed form likelihood but for a larger set of variable, is referred to as a semi-implicit

model.
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In this essay, we focus on experimental design with the expected information gain (EIG) criterion, also

called mutual information utility, that aims to reduce Shannon entropy in our beliefs about m. The

EIG-optimal design is specifically,

ξ∗ = arg max
ξ

Ep(m)p(ψ|m)p(y|m,ψ,ξ)

[
log

p(m|y, ξ)
p(m)

]
. (7.1)

Finding ξ∗ amounts to estimating the EIG objective function and optimising over the space of possible

designs.

If we have already observed some data D = {(ξ1, y1), . . . , (ξT , yT )}, then we fit model-specific posteri-

ors for the auxiliary variable ψ for each model p(ψ|m,D), and we compute the posterior over models

p(m|D) ∝ p(m)p(D|m). Thus, we update our priors p(m) and p(ψ|m) on the basis of past data.

7.1.3 The variational approach

Posterior lower bound

Foster et al. (2019) considered variational estimation of the EIG. Their general strategy was to optimise

variational upper or lower bounds on the EIG. Their simplest bound was the posterior lower bound (also

called the Barber–Agakov bound after Barber and Agakov (2003)). With the variables we have in this

model, the bound would be expressed as

Ep(m)p(ψ|m)p(y|m,ψ,ξ)

[
log

p(m|y, ξ)
p(m)

]
≥ Ep(m)p(ψ|m)p(y|m,ψ,ξ)

[
log

qφ(m|y)

p(m)

]
. (7.2)

The new term qφ(m|y, ξ) was generically referred to as the amortised approximate posterior with varia-

tional parameters φ. It is an approximate posterior distribution on the latent variable m of interest. The

amortisation here refers to the fact that we learn a function from y to a distribution over m (for different

ξ, we would train separate functions). For the model selection approach, then, qφ is a function from y

to a distribution over the discrete model indicator m. First, since m is discrete, the choice of variational

family is moot, because every distribution over m can be finitely represented. Second, qφ has a very

simple interpretation. It is a classifier that attempts to predict, on the basis of input y, which model of

m1, . . . ,mk generated that data, specifically trying to estimate the posterior probability p(m|y, ξ) over

the k different possibilities for m. Importantly though, rather than just attempting to predict the correct

model that was responsible for generating the data y, it is essential that we have a probabilistic classifier

that assigns probabilities to each possible model. For this probabilistic classifier, the issue of calibration

becomes central, as we hope that our classifier probabilities will approach p(m|y, ξ) during training.

We have established that qφ is simply a probabilistic classifier for the model selection case. How should

this classifier be trained? In general, Foster et al. (2019) proposed training qφ by stochastic gradient

methods (Robbins and Monro, 1951; Kingma and Ba, 2014) to maximise the lower bound with respect

207



to φ

φ∗ = arg max
φ

Ep(m)p(ψ|m)p(y|m,ψ,ξ)

[
log

qφ(m|y)

p(m)

]
(7.3)

In model selection, training φ simply means training the parameters of the classifier. Maximising the

posterior lower bound is equivalent to simply maximising the expected log likelihood under q, i.e.

φ∗ = arg max
φ

Ep(m)p(ψ|m)p(y|m,ψ,ξ) [log qφ(m|y)] . (7.4)

This is true because p(m) has no dependence on φ. So, we see that training qφ to maximise the variational

posterior lower bound amounts to maximum likelihood training of a neural classifier when we are in the

setting of model selection. (Care may be needed to ensure the classifier produces good probabilistic

uncertainty, as well as getting good predictions, as these probabilities are central to our method.)

In fact, we have an enhanced setting in which we can draw an infinite amount of training data by

simulating from p(m)p(ψ|m)p(y|m,ψ, ξ). To do this, we sample a random model m from its prior, then a

random set of parameters ψ ∼ p(ψ|m) for the chosen model, and then simulate an experimental outcome

under design ξ. Importantly, we do not need to draw a fixed training or test set, and we never need to

show the classifier the same examples twice, we instead draw new batches on the fly. One particularly

important consequence of this is that the spectre of over-fitting is much reduced in our case, as there is

no fixed training set to overfit to.

We now see another important point—the negative log-likelihood loss of the classifier is essentially an

estimate of the EIG, up to a constant. Suppose we have completed training and reached parameters φ̂.

Then the EIG estimate is

EIG(ξ) ≈ Ep(m)p(ψ|m)p(y|m,ψ,ξ)

[
log

qφ̂(m|y)

p(m)

]
= Ep(m)p(ψ|m)p(y|m,ψ,ξ)

[
log qφ̂(m|y)

]
+H[p(m)] (7.5)

and we can estimate the expectation with new, independent batches simulated from the model.

In summary, the posterior lower bound method for model selection amounts to training a classifier on

(infinite) simulated data to predict m from y. The optimal design ξ∗ will be approximated by the

classifier which has the best (lowest) validation loss, which is a good approximation of having the highest

EIG.

Marginal + likelihood estimator

The posterior lower bound is not the only way to estimate the EIG proposed by Foster et al. (2019).

Both the marginal and the VNMC methods require an explicit likelihood, so they are not suitable for

the semi-implicit model selection scenario. The marginal + likelihood estimator is

EIG(ξ) ≈ Ep(m)p(ψ|m)p(y|m,ψ,ξ)

[
log

q`(y|m, ξ)
qp(y|ξ)

]
. (7.6)
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This estimator translates, with some simplification, into the model selection setting. The ‘approximate

likelihood’ q`(y|m, ξ) in the model selection setting is an approximation of the model evidence q`(y|m, ξ) ≈
p(y|m, ξ). For model selection when m is discrete, we do not need to separately estimate qp and q`, we

can instead sum over m to obtain

qp(y|ξ) =
∑

m

p(m)q`(y|m, ξ). (7.7)

As shown in Appendix A.4 of Foster et al. (2019), the estimator actually becomes a lower bound

EIG(ξ) ≥ Ep(m)p(ψ|m)p(y|m,ψ,ξ)

[
log

q`(y|m, ξ)∑
m′ p(m

′)q`(y|m′, ξ)

]
(7.8)

on the EIG in this case, which is not generally the case for the marginal + likelihood method. (In fact,

this lower bound is itself a special case of the likelihood-free ACE lower bound introduced in Foster et al.

(2020). Indeed, if we take the prior as the variational posterior and let L → ∞ in the LF-ACE bound,

we recover this lower bound.)

This lower bound also has a nice interpretation in the model selection scenario. The best design will be

the one where the lower bound is largest, which happens, loosely speaking, when q`(y|m, ξ) is much larger

than
∑
m p(m)q`(y|m, ξ). That means the approximate model evidence for the observation y under the

correct model m is much larger than its evidence under other models. Thus, using the experiment with

design ξ and observing y will allow us to easily discriminate between models.

To explicitly use this method, we need to choose trainable density estimators for q`(y|m, ξ;φ) with

parameters φ. The simplest method would be to have a distinct set of variational parameters for each

value of m and ξ. Whilst it is possible to use a Gaussian density model, we could use more sophisticated

methods such as normalising flows (Rezende and Mohamed, 2015). The training approach is similar to

that for the posterior method. We use infinite simulated data, and maximise the variational lower bound

using stochastic gradient optimisers.

The last two sections highlight a general feature of the variational methods of Foster et al. (2019)—we

can either make variational approximations to densities over m or over y. Both lead to valid bounds.

7.1.4 Stochastic gradient optimisation of the design

So far, we have focused on variational estimation of the EIG. As shown in Foster et al. (2020), it is only

a short jump from variational estimation of the EIG to stochastic gradient optimisation of the design

using a variational lower bound on EIG. The benefit here, of course, is that we do not have conduct a

grid search, co-ordinate exchange or similar algorithm over the design space. What we require instead is

a continuous design space and the ability to differentiate observations with respect to designs.

Whilst Foster et al. (2020) focused on explicit likelihood models, both the posterior (Barber–Agakov)

lower bound and the LF-ACE bound are applicable to the semi-implicit model selection setting. There

is just one thing to check, which is that we can compute a derivative ∂y/∂ξ. In the semi-implicit case,

209



this is often fine. For example, if p(y|m,ψ, ξ) takes the form y = g(m,ψ, ξ, ε) for a differentiable g and

an independent noise random variable ε.

Assuming this is the case, we can train ξ by stochastic gradient using either the posterior bound or the

simplified LF-ACE bound that was derived in equation (7.8). We focus on the posterior lower bound

for simplicity. Recall that, for the posterior bound, we are training a classifier to predict m from y. We

have

EIG(ξ) ≥ Ep(m)p(ψ|m)p(y|m,ψ,ξ) [log qφ(m|y)] +H[p(m)] (7.9)

where qφ is the classifier. One thing that we skimmed over slightly in the previous section was that φ

implicitly depends on ξ via the training data, and different ξ will have different classifiers with different

optimal values of the classifier parameters φ.

In Foster et al. (2020), rather than training separate classifiers with different designs ξ, we update ξ and

φ togther in one stochastic gradient optimisation over the combined set of variables (ξ, φ). To explicitly

write down the ξ gradient here, let’s assume that we do have y = g(m,ψ, ξ, ε), so we can write

L(ξ, φ) = Ep(m)p(ψ|m)p(ε) [log qφ(m|g(m,ψ, ξ, ε))] +H[p(m)]. (7.10)

In this form, the ξ gradient can be simply calculated as

∂L
∂ξ

= Ep(m)p(ψ|m)p(ε)

[
∂ log qφ
∂y

∣∣∣∣
m,g(m,ψ,ξ,ε)

∂g

∂ξ

∣∣∣∣
m,ψ,ξ,ε

]
. (7.11)

The beauty of modern auto-diff frameworks, of course, means that we do not even need to calculate this

explicitly ourselves.

For model selection, equation (7.11) has a natural interpretation. We want to increase the lower bound

L by moving to regions in which the classifier can confidently predict the correct model label m. This

corresponds to moving y into regions in which log qφ(m|y) is larger for the model that actually generated

y. In other words, we want the input to the classifier y to be pushed to regions where the classifier

already finds it easy to classify correctly. That is, regions where deciding which model is correct is easier.

We then exploit the differentiable relationship between ξ and y, and use this signal to ‘improve’ the input

to the classifier by adjusting the design ξ to that such datasets y are more likely to be synthesised.

At the same time, we are constantly making gradient updates on the classifier parameters φ. This means

that, as the distribution of (m, y) changes, the classifier can adjust accordingly.

If this sounds dubious, it is worth taking a step back. We are quite simply optimising the lower bound

L(ξ, φ) jointly with respect to ξ and φ, in the hopes that this global maximum may closely correspond

to the EIG maximiser ξ∗. We actually have a guarantee that the value of L at our final trained variables

ξ̂, φ̂ is a lower bound on EIG(ξ̂), i.e. the true value of ξ̂ cannot be worse than the value we estimate for

it.

Whilst the method is approximate, because we cannot quantify the discrepancy between L and the true

210



EIG, it is highly scalable to very large design spaces. Other bounds presented in Foster et al. (2020)

have the added benefit that they become equal to the EIG in a limit, providing some assurances that

the global maximum of L is a good design. Foster et al. (2020) also introduced the evaluation method

of establishing lower and upper bounds on chosen designs. This numerically bounds the discrepancy

between the training objective L and the true EIG objective. Sadly, the upper bounds are only valid for

explicit likelihood models; they don’t work in the semi-implicit model selection case.

Finally, all of the above discussion carries over if we were to use the lower bound of equation (7.8) instead

of the posterior bound.

7.1.5 Comparing with other classification approaches

We have established that the variational posterior approach of Foster et al. (2019) instructs us to learn

a classifier to predict m from y and use the log probabilities qφ(m|y) to estimate EIG. Other authors

have considered supervised classification as a means to perform Bayesian experimental design for model

selection.

Here, we focus on Hainy et al. (2018), which is “the first approach using supervised learning methods for

optimal Bayesian design.” This method trains a classifier that predictsm using y, with separate classifiers

for different ξ. They focus on training decision trees and random forest classifiers (Breiman, 2001). Since

random forests are not generally trained by stochastic gradient methods, this means that they fall back

on simulating fixed training and test datasets of samples (mj , yj)
J
j=1 from p(m)p(ψ|m)p(y|m,ψ, ξ). The

training dataset is used to train the classifier model, whilst the test dataset gives unbiased estimates

of the posterior loss. There is a danger that the classifier may overfit to the training set in this case.

Compare this with the training of stochastic gradient classifiers in our previous sections—here we can

draw fresh training batches on the fly, and avoid overfitting to a training set.

Decision trees and random forests do provide estimates of the class probabilities q(m|y), but they are

relatively noisy. For this reason, Hainy et al. (2018) focus on the 0–1 loss to evaluate designs. In the

language of classification, therefore, they choose the design which gives the best test accuracy. Again,

this is different to the variational approach which fits a neural classifier that automatically provides

smooth probability estimates qφ(m|y). The latter case was applied to estimate the information gain,

which we showed is equivalent to choosing the design which gives the best test loss, assuming a negative

log-likelihood loss function.

The trade-offs between these methods are clear when we consider optimising over a large design space.

For the variational method, we have to train a number of neural networks to convergence. For the

classification approach of Hainy et al. (2018), we train a number of random forest classifiers—this may

be significantly more computationally efficient. Hainy et al. (2018) propose embedding their 0–1 loss

estimation within a co-ordinate exchange algorithm (Meyer and Nachtsheim, 1995) to optimise over

designs. The variational method, on the other hand, can naturally be embedded in a unified stochastic

gradient optimisation to find the optimal design through stochastic gradient optimisation. The former
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may be more effective when the design space is not continuous, the latter can work well in a high-

dimensional design space that is difficult to search using discrete methods.
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7.2 Bayesian active learning by disagreement and Bayesian ex-

perimental design

7.2.1 Introduction

The purpose of this essay is to highlight the connection between the Bayesian Active Learning by Dis-

agreement (BALD) score as estimated by Gal et al. (2017) and the Prior Contrastive Estimation (PCE)

bound of Foster et al. (2020). There is a deep connection between Bayesian experimental design and

Bayesian active learning. A significant touchpoint is the use of the mutual information score (Lindley,

1956)

I(ξ) = Ep(θ)p(y|θ,ξ) [H[p(θ)]−H[p(θ|y, ξ)]] . (7.12)

to acquire new information in a Bayesian model with parameters θ where, y is the as yet unobserved

outcome, and ξ is the design to be chosen.

7.2.2 Bayesian Active Learning by Disagreement

One of the computational challenges inherent in estimating equation (7.12) directly is that it involves

repeated estimation of posterior distributions p(θ|y, ξ) for different simulated observations y. To remove

this particular bottleneck, Houlsby et al. (2011) introduced a rewriting of the mutual information score

using Bayes rule

I(ξ) = H[p(y|ξ)]− Ep(θ) [H[p(y|θ, ξ)]] . (7.13)

Whilst this is exactly equal to the original mutual information score, the new way of expressing I removes

the requirement to estimate posterior distributions over θ. They termed equation (7.13) the Bayesian

Active Learning by Disagreement (BALD) score.

Unfortunately, the story does not end with the BALD score because it still typically involves some

intractable computations that must be estimated. For example, Houlsby et al. (2011) focused on ap-

proximations for Gaussian Process models (Williams and Rasmussen, 2006).

The more recent work by Gal et al. (2017) estimated the BALD score in the context of Bayesian deep

learning classifiers. In such a model, θ represents the parameters of a classification model, and p(y|θ, ξ)
is a probability distribution over classes y ∈ {c1, . . . , ck}. Computing p(y|θ, ξ) involves a forward pass

through the classifier with input ξ and parameters θ, the network generally ends in a softmax activation

to produce a normalised distribution. To sample different values of θ, Gal et al. (2017) employed Monte

Carlo Dropout (Gal and Ghahramani, 2016). Given independent samples θ1, . . . , θM from p(θ), they

proposed the following Deep BALD (DBALD) estimator of I(ξ)

I(ξ) ≈ ÎDBALD(ξ) = H

[
1

M

M∑

i=1

p(y|θi, ξ)
]
− 1

M

M∑

i=1

H[p(y|θi, ξ)] (7.14)

where H[P (y)] = −∑c P (y = c) logP (y = c).
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Notation For comparison with the original paper, we used θ in place of ω, ξ in place of x, M in place

of T and p(θ) is used in place of q∗θ(ω).

7.2.3 Prior Contrastive Estimation

In the context of stochastic gradient optimisation of Bayesian experimental designs, Foster et al. (2020)

also considered the mutual information score I(ξ) and the rearrangement equation (7.13). They proved

the following Prior Contrastive Estimation (PCE) lower bound on I(ξ)

I(ξ) ≥ Ep(θ0)p(y|θ0,ξ)p(θ1)...p(θL)

[
log

p(y|θ0, ξ)
1

L+1

∑L
`=0 p(y|θ`, ξ)

]
(7.15)

and used this bound to optimise ξ by stochastic gradient. One approach to estimate this bound using

finite samples is the estimator

ÎPCE-naive(ξ) =
1

M

M∑

m=1

log
p(ym|θm0, ξ)

1
L+1

∑L
`=0 p(ym|θm`, ξ)

. (7.16)

where ym, θm0 ∼ p(y, θ|ξ) and θm` ∼ p(θ) for ` ≥ 1. However, we can also re-use samples more efficiently

to give the estimator

ÎPCE(ξ) =
1

M

M∑

m=1

log
p(ym|θm, ξ)

1
M

∑M
`=1 p(ym|θ`, ξ)

. (7.17)

where ym, θm ∼ p(y, θ|ξ). (To check the expectation of this version matches the PCE bound with

L = M −1, we simply move the E sign inside of the summation.) Finally, Foster et al. (2020) discussed a

speed-up that is possible when y is a discrete random variable taking values in {c1, . . . , ck}. In this case,

we can integrate out y by summing over it, rather than by drawing random samples of y. This method,

called Rao-Blackwellisation, results in the estimator

ÎPCE-RB(ξ) =
1

M

M∑

m=1

∑

c

p(y = c|θm, ξ) log
p(y = c|θm, ξ)

1
M

∑M
`=1 p(y = c|θ`, ξ)

. (7.18)

7.2.4 PCE and DBALD equivalence

We have looked at two parallel ways of approximating I(ξ). The interesting result is that the Rao-

Blackwellised PCE estimator and the DBALD estimator are the same. We can see this by direct calcu-
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lation

ÎPCE-RB(ξ) =
1

M

M∑

m=1

∑

c

p(y = c|θm, ξ) log
p(y = c|θm, ξ)

1
M

∑M
`=1 p(y = c|θ`, ξ)

(7.19)

=
1

M

M∑

m=1

∑

c

p(y = c|θm, ξ) log p(y = c|θm, ξ)

− 1

M

M∑

m=1

∑

c

p(y = c|θm, ξ) log

(
1

M

M∑

`=1

p(y = c|θ`, ξ)
) (7.20)

= − 1

M

M∑

m=1

H[p(y|θm, ξ)]−
1

M

M∑

m=1

∑

c

p(y = c|θm, ξ) log

(
1

M

M∑

`=1

p(y = c|θ`, ξ)
)

(7.21)

= − 1

M

M∑

m=1

H[p(y|θm, ξ)]−
∑

c

(
1

M

M∑

m=1

p(y = c|θm, ξ)
)

log

(
1

M

M∑

`=1

p(y = c|θ`, ξ)
)

(7.22)

= − 1

M

M∑

m=1

H[p(y|θm, ξ)] +H

[
1

M

M∑

m=1

p(y|θm, ξ)
]

(7.23)

= ÎDBALD(ξ). (7.24)

A major consequence of this result is that the expectation of the DBALD score is a lower bound on

the true mutual information score. We also note that this estimator has been used by Vincent and

Rainforth (2017) in the context of Bayesian experimental design, although they did not show that it was

a stochastic lower bound.

7.2.5 New diagnostic for the DBALD score

One advantage of making this connection is that we can bring certain diagnostics that were applied by

Foster et al. (2020) over to the active learning setting. In particular, Foster et al. (2020) paired their

PCE lower bound with a complementary upper bound on I(ξ). This provides a very useful diagnostic

tool to tune the number of samples M used to compute the DBALD score. If the lower bound and

upper bound are very close, we know that the difference between the DBALD score and the true mutual

information must also be small. On the other hand, if the upper and lower bounds are far apart, then

the DBALD score might not yet be close to the true mutual information.

One upper bound upper by Foster et al. (2020) was the Nested Monte Carlo (NMC) (Vincent and

Rainforth, 2017) estimator. For the discrete y case with Rao-Blackwellisation, the estimator is

ÎNMC-RB(ξ) = − 1

M

M∑

m=1

∑

c

p(y = c|θm, ξ) log


 1

M − 1

∑

` 6=m
p(y = c|θ`, ξ)


− 1

M

M∑

m=1

H[p(y|θm, ξ)]

(7.25)

=
1

M

M∑

m=1

H


p(y|θm, ξ),

1

M − 1

∑

` 6=m
p(y|θ`, ξ)


− 1

M

M∑

m=1

H[p(y|θm, ξ)] (7.26)

where H[p, q] is the cross-entropy. The expectation of this mutual information estimator is always an
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upper bound on I(ξ). So both the DBALD score and the NMC-RB estimator converge to I(ξ) as

M →∞, but from opposite directions. We suggest NMC-RB as a diagnostic for the parameter M .

7.2.6 BALD estimators for regression

The connection to PCE may also be helpful when considering regression models. The standard parametri-

sation of a Bayesian neural network for regression is for the output of the network with parameters θ and

input ξ to be the predictive mean µ and standard deviations σ of a Gaussian y|θ, ξ ∼ N(µ(θ, ξ), σ(θ, ξ)2).

(It is normal for y, µ and σ to be vector-valued and for the Gaussian to have a diagonal covariance

matrix.)

For the DBALD estimator for a regression model, the entropy of a Gaussian is known in closed form, so

H[p(y|θi, ξ)] = 1
2 log

(
2πeσ(θi, ξ)

2
)
. However, the entropy of a mixture of GaussiansH

[
1
M

∑M
i=1 p(y|θi, ξ)

]

cannot be computed analytically. Instead, we could estimate this mixture of Gaussians entropy using

Monte Carlo by sampling i ∈ {1, . . . ,M} uniformly, sampling y from p(y|θi, ξ) and calculating the log-

density at y.

Despite the fact that we are using an analytic entropy for one term, and a Monte Carlo estimate for the

other, it’s easy to see that this new estimator is a partially Rao-Blackwellised PCE estimator. (This can

be proved starting from equation (7.17).) That means all the existing facts, such as the estimator being

a stochastic lower bound on I(ξ), carry over naturally to the regression case.

216



7.3 Deep Adaptive Design and Bayesian reinforcement learning

7.3.1 Introduction

The purpose of this essay is to discuss the connections between the recently proposed Deep Adaptive De-

sign (DAD) (Foster et al., 2021) method and the field of Bayesian reinforcement learning (Ghavamzadeh

et al., 2016). That such a connection exists is hinted at by a high-level appraisal of the DAD method—it

solves a sequential decision making problem to optimise a certain objective function, decision optimality

is dependent on a state which is the experimental data already gathered, and the automated decision

maker is a design policy network. We begin by showing how the sequential Bayesian experimental design

problem solved by DAD can be viewed as a Bayes Adaptive Markov Decision Process (BAMDP) (Ross

et al., 2007; Guez et al., 2012), making this connection formally precise. We also isolate some of the key

differences between the problem DAD is solving and a conventional Bayesian RL problem, noting that

the reward in DAD is intractable. Much of the effort of DAD is in establishing a differentiable surrogate

for the true objective. The differentiability of the surrogate reward is also a key feature of the DAD

problem, which facilitates the direct policy optimisation approach taken to train the policy that is rarely

applicable in standard RL problems. We also highlight other features of the DAD method, such as its

avoidance of explicitly estimating any posterior distributions, i.e. the avoidance of explicit belief state

estimation.

Having studied DAD in some detail, we consider possible extensions of the method that make use of the

RL connection. First, there are rather natural extensions of DAD to more general objective functions that

incorporate design costs, terminal decisions and other functionals of the posterior distribution. Second,

more standard approaches to (Bayesian) RL, such as Q-learning (Watkins and Dayan, 1992; Dearden

et al., 1998) can be applicable to the sequential Bayesian experimental design problem. They may be

particularly useful for long- or infinite-horizon problems.

7.3.2 Background on Bayesian Reinforcement Learning

Markov Decision Processes

The Markov Decision Process (MDP) (Bellman, 1957; Duff, 2002) is a highly successful mathematical

framework for sequential decision problems in a known environment. Formally, a MDP consists of a state

space S, an action space A, a transition model P, a reward distribution R, a discount factor 0 ≤ γ ≤ 1

and a time horizon T which may be infinite. An agent operates in the MDP by moving between different

states in discrete time. For example, if the agent is in state st at time t and chooses to play action at, then

the next state st+1 will be sampled randomly according to the transition model st+1 ∼ P(s|st, at). Since
the distribution over the next state depends only on st and at, the transitions are Markovian. Finally,

by making the transition st
at−→ st+1, the agent receives a random reward rt ∼ R(r|st, at, st+1) ∈ R.

The agent’s objective is to maximise the discounted sum of rewards
∑T
t=0 γ

trt. Given the Markovian

nature of the problem, it is sufficient to choose actions according to some policy π, where at = π(st).
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The optimality condition for a policy is

π∗ = arg max
π

J (π), (7.27)

where

J (π) = Es0∼p(s0)
∏T

t=0 at=π(st),st+1∼P(s|st,at),rt∼R(r|st,at,st+1)

[
T∑

t=0

γtrt

]
. (7.28)

In a classical MDP, we assume that P and R are known during the planning phase, when the agent

devises their policy π. Of particular utility in planning a policy is the value function, defined as

V π(s) = Es′∼P(·|s,π(s)),r∼R(r|s,π(s),s′) [r + γV π(s′)] (7.29)

and the Q-function

Qπ(s, a) = Es′∼P(·|s,a),r∼R(r|s,a,s′) [r + γV π(s′)] . (7.30)

These equations are valid when T =∞, for finite time horizon we also have to take account of time t in

state evaluations.

Bayes Adaptive Markov Decision Processes

The BAMDP (Duff, 2002; Ross et al., 2007; Guez et al., 2012; Ghavamzadeh et al., 2016) is one approach

to generalising the MDP to deal with unknown transition models. In the BAMDP, the agent retains

an explicit posterior distribution over the transition model called a belief state. This allows a formally

elegant approach to behaviour under uncertainty which can trade off exploration (learning the transition

model) and exploitation (executing actions that receive a high reward).

To set this up formally using the notation of Guez et al. (2012), we begin by considering an outer

probabilistic model over the transition probabilities with prior P (P). Given a history of states, actions

and rewards ht = s0a0 . . . rt−1at−1st, we can compute a posterior distribution on P by

P (P|ht) ∝ P (P)P (ht|P) = P (P)

t∏

τ=0

P(sτ+1|sτ , aτ ). (7.31)

To bring this back into the MDP formulation, we consider an augmented state space S+ which consists

of entire histories, and which encapsulates both the current state and our beliefs about the transition

model. Transitions in the augmented state space S+ are given by integrating over the current beliefs on

P
P+(ht+1|ht, at) =

∫
P (P|ht)P(st+1|st, at) dP. (7.32)

It is also possible for BAMDPs to incorporate unknown reward distributions (see e.g. Zintgraf et al.

(2019)), where an outer model over reward distributions is updated on the basis of ht in the same

manner as for the transition probabilities. Specifically, if we have a prior P (R) over reward distributions,
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then the reward function for playing action at in augmented state ht is

R+(r|ht, at, ht+1) =

∫
P (R|ht+1)R(r|st, at, st+1) dR. (7.33)

Combining these gives a new MDP with state space S+ of histories, unchanged action space A, augmented

transition model P+, augmented reward distribution R+, discount factor γ and time horizon T . Optimal

action in this new MDP gives the optimal trade-off between exploration and exploitation.

7.3.3 The Bayesian RL formulation of DAD

In DAD (Foster et al., 2021), we choose a sequence of designs ξ1, . . . , ξT with a view to maximising the

expected information gained about a latent parameter of interest θ. To place DAD in a Bayesian RL

setting, we begin by associating the design ξt chosen before observing an outcome with the action at−1.

The difference in time labels is necessary because ξt is chosen before yt is observed. Since the observation

distribution p(y|ξ, θ) depends on the unknown θ, we are not in a MDP, but rather a BAMDP. As in

the previous section, it seems sensible to consider the state space for DAD as the space of histories

ht = ξ1y1 . . . ξtyt. Uncertainty over the transition model in DAD is captured by uncertainty in θ.

Specifically, we have the following transition distribution for history states

p(ht+1|ht, ξt+1) =

∫
p(θ|ht)p(yt+1|ξt+1, θ) dθ (7.34)

which is the analogue of equation (7.32), but now expressed in the notation of experimental design. Unlike

the standard reinforcement learning setting, there are no external rewards in DAD. Instead, rewards are

defined in terms of information gathered about θ. Specifically, we can take the reward distribution on

augmented states R+(r|ht, at, ht+1) to be a deterministic function of ht+1 that represents the information

gained about θ by moving from ht to ht+1. This is given by the reduction in entropy

R+(ht, at, ht+1) = H[p(θ|ht)]−H[p(θ|ht+1)]. (7.35)

To complete the BAMDP specification, we take γ = 1 and we use a time horizon of T . This gives the

objective function for policies

J (π) = E

[
T∑

t=1

rt

]
= Ep(θ)p(hT |θ,π)

[
T∑

t=1

H[p(θ|ht−1)]−H[p(θ|ht)]
]
. (7.36)

To connect this with the objective that is used in DAD, we apply Theorem 1 of Foster et al. (2021),

which tells us that

J (π) = Ep(θ)p(hT |θ,π)

[
T∑

t=1

H[p(θ|ht−1)]−H[p(θ|ht)]
]

Theorem 1
= IT (π) (7.37)
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where

IT (π) = Ep(θ)p(hT |θ,π)

[
log

p(hT |θ, π)

Ep(θ′)[p(hT |θ′, π)]

]
. (7.38)

In summary, we can cast the problem that DAD solves as a BAMDP. We identify designs with actions,

experimental histories with augmented states, we use the probabilistic model to give a natural transition

distribution on these states, we introduce non-random rewards that are one-step information gains, we

set γ = 1 and generally assume a finite number of experiment iterations T .

7.3.4 What makes the experimental design problem distinctive?

Having established a theoretical connection between sequential Bayesian experimental design and Bayesian

RL, one might naturally ask whether there is any reason to develop specialist algorithms for experimen-

tal design when general purpose Bayesian RL algorithms are applicable. First, we focus on the reward

structure of the Bayesian experimental design problem. The rewards rt = H[p(θ|ht−1)]−H[p(θ|ht)] are
generally intractable, requiring Bayesian inference on θ. Rather than attempting to estimate this reward,

DAD proposes the sPCE lower bound on the total expected informationn gain under policy π, namely

IT (π) ≥ LT (π, L) = Ep(θ0)p(hT |θ0,π)p(θ1:L)

[
log

p(hT |θ0, π)
1

L+1

∑L
`=0 p(hT |θ`, π)

]
. (7.39)

Interestingly, there is a way to interpret the sPCE objective within the RL framework. First, we use root

sampling to sample θ0 and hT together. We also fix the contrasts θ1:L. Finally, we use the surrogate

rewards

r̃t = log
p(ht|θ0, π)

1
L+1

∑L
`=0 p(ht|θ`, π)

− log
p(ht−1|θ0, π)

1
L+1

∑L
`=0 p(ht−1|θ`, π)

. (7.40)

Since these rewards depend on θ0, we can treat them as randomised rewards if we are only conditioning

on ht.

One important feature of these rewards is that, whilst intractable, the surrogate LT (π, L) is differentiable

with respect to the designs (ξt)
T
t=1 and observations (yt)

T
t=1. In the simplest form of DAD, we further

assume a differentiable relationship between yt and ξt that is encapsulated by a reparametrisable way to

sample p(y|θ, ξ). Concretetly, for example, we might have y|θ, ξ = µ(θ, ξ)+σ(θ, ξ)ε where ε ∼ N(0, 1) and

µ and σ are differentiable functions. The result of these assumptions is that we can directly differentiate

the surrogate objective LT (π, L) with respect to the parameters φ of the policy network πφ that generates

the designs (ξt)
T
t=1 according to the formula ξt = πφ(ht−1). DAD optimises the policy πφ directly by

gradient descent on LT (π, L).

Thus, DAD can be characterised in RL language as a direct policy optimisation method. Whilst direct

policy optimisation methods (Lorberbom et al., 2019; Howell et al., 2021) are used in RL, they are

far from the norm, with methodologies such as Q-learning (Watkins and Dayan, 1992) and actor–critic

(Konda and Tsitsiklis, 2000) being more dominant. This may be because RL does not typically assume

that the reward function is differentiable—for example, rewards from a real environment rarely come

with gradient information. It may also be because discrete action problems are more the focus.
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DAD also contrasts with many approaches to Bayesian RL in that it avoids the estimation of the

posteriors p(θ|ht, π). In Bayesian RL, these posterior distributions are referred to as belief states. Many

methods for tackling Bayesian RL problems utilise the estimation of belief states (Ghavamzadeh et al.,

2016; Igl et al., 2018; Zintgraf et al., 2019). DAD instead relies on an approach that is closer to the

method of root sampling (Guez et al., 2012). This is also one difference between DAD and the previous

approach to non-greedy sequential Bayesian experimental design of Huan and Marzouk (2016).

7.3.5 New objective functions for DAD

Seeing DAD in the framework of Bayesian RL naturally invites the question of whether the general

DAD methodology can be applied to objective functions (rewards) that are not information gains. The

preceding discussion suggests that, using root sampling so a dependence on θ is possible, we could

consider rewards of the form

rgeneral
t = R(θ, ht, εt) (7.41)

where R is a known differentiable function and εt is an independent noise random variable. Clearly, the

information gain reward rt fits this pattern, being a function of ht only. Combining the differentiable

reward function with the reparametrisation assumption would mean that the general reward

J general(π) = Ep(θ)p(hT )p(ε1:T )

[
T∑

t=1

rgeneral
t

]
(7.42)

can be optimised with respect to π by direct policy gradients. In the experimental design context, this

opens the door to two relatively simple extensions of DAD. First, we can assign a (differentiable) cost

to each design. Suppose we augment the original expected information gain objective with the negative

sum of the costs of the designs. Using λ to trade off cost and information, we arrive at

J costed(π) = IT (π)− λE
[
T∑

t=1

C(ξt)

]
(7.43)

which we can tackle using an approach that is essentially the same as DAD. Second, we can consider

different measures of the quality of the final posterior distribution. For instance, with a one-dimensional

θ, we might be more interested in reducing posterior variance than posterior entropy. We could take the

reward function

rvariance
t = Varp(θ|ht−1)[θ]−Varp(θ|ht)[θ]. (7.44)

Whilst there are certain reasons why the entropy approach is considered more theoretically well-justified

(Lindley, 1956), using a different functional of the posterior distribution as a reward signal does fit

relatively naturally into the DAD framework. The remaining piece of the puzzle would be whether that

functional could be estimated efficiently as DAD estimates the information gain using sPCE. For the
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variance, we have

Ep(θ)p(hT |θ,π)

[
T∑

t=1

rvariance
t

]
≥ Varp(θ)[θ]− Ep(θ)p(hT |θ,π)

[
(θ − fφ′(hT ))2

]
(7.45)

where fφ′ is a learnable function. Note the similarity with the Barber–Agakov bound (Barber and

Agakov, 2003; Foster et al., 2019, 2020).

7.3.6 RL algorithms for Bayesian experimental design

To conclude, making the formal connection between sequential Bayesian experimental design opens up

the possibility of using the vast literature on Bayesian RL and control theory to improve our ability to

plan sequential experiments. Whilst the direct policy optimisation approach of DAD works remarkably

well, understanding the connection to RL should aid us when this training method begins to break down.

The application of existing Bayesian RL algorithms to experimental design is an exciting area for new

research that is well within reach.

A case of potential difficulty for DAD, where such insights may be useful, is in long-horizon experiments.

In order to plan effectively for long experiments, DAD simulates thousands of possible experimental

trajectories. However, the efficiency of this simulation is likely to drop as T increases. DAD is extremely

data hungry—it resimulates completely new trajectories at each gradient step. This avoids any problems

of the training data becoming out-of-date, but it increases the training cost.

It is also conceivable that, in some settings, it is impossible to plan for all future eventualities. The RL

analogy would be a strongly stochastic environment in which a game is selected at random from a long

list at the start of play. The agent, therefore, has to first discover which game it is playing, and then to

play it successfully. If all planning is conducted up-front, then the RL agent has to learn how to play

every single game well before starting on the real environment. The alternative is to introduce some real

data and retrain the policy as we go. In the RL setting, that would mean discovering which game is

being played before knowing how to play the games, which could be achieved with a much simpler policy.

Once this discovery is made with good confidence, we can retrain to learn to play that specific game.

In the experimental design setting, we are often in the ‘unknown game’ setting. This is because, until

we have observed some data, it is almost impossible to know which later experiments will be optimal to

run. The DAD approach is to simulate different possibilities and learn to ‘play’ well across the board.

The retraining alternative would be a hybrid approach between the standard greedy method and DAD

in which some real data is used to retrain the policy as we progress.
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7.4 Statistical estimation of mutual information

7.4.1 Introduction

Mutual information is a central statistical quantity that measures the relationship between two random

variables. In machine learning, it has found use in blind source separation (Hyvärinen, 1999), represen-

tation learning (van den Oord et al., 2018), the information bottleneck (Tishby et al., 2000) and feature

selection (Kwak and Choi, 2002). It is also a key quantity in Bayesian experimental design (Lindley,

1956). The mutual information between jointly distributed random variables x,y ∼ p(x,y) is defined as

I(x,y) = Ep(x,y)

[
log

p(x,y)

p(x)p(y)

]
. (7.46)

In this document, we focus on the estimation of mutual information in the explicit likelihood setting in

which one of the conditional densities, say p(y|x) is known in closed form. In this case, asymptotically

consistent estimators exist for the mutual information, and we are concerned in studying their convergence

rates. In the implicit likelihood setting, the standard approach is to introduce a positive, unnormalised

function κ(x,y) that is an estimate of the joint p(x,y). However, estimators that use κ as a surrogate for

the true unknown density can only be guaranteed to produce lower bounds on the mutual information

in the limit of infinite samples of x,y. The convergence rates, though, behave similarly.

7.4.2 Nested Monte Carlo and leave-one-out estimators

The Nested Monte Carlo (NMC) estimator (Ryan, 2003), also called the double loop estimator, for

mutual information estimation with an explicit likelihood is defined as

An,m =
1

n

n∑

i=1

log
p(yi|xi)

1
m

∑m
j=1 p(yi|xij)

(7.47)

where xi,yi
i.i.d.∼ p(x,y) and xij

i.i.d.∼ p(x) are independent. It is also possible to include some correlation

in the x samples, for example we can repeatedly use (x1j)
m
j=1

A′n,m =
1

n

n∑

i=1

log
p(yi|xi)

1
m

∑m
j=1 p(yi|x1j)

, (7.48)

and we can use the original n samples, giving the leave-one-out (LOO) estimator (Poole et al., 2019)

Ãn =
1

n

n∑

i=1

log
p(yi|xi)

1
n−1

∑
j 6=i p(yi|xj)

. (7.49)

Note that E[An,m] = E[A′n,m] and E[Ãn] = E[An,n−1], so the correlations only change the variance.

Furthermore, estimators An,m and A′n,m both cost O(mn) evaluations of the likelihood and Ãn costs

O(n2) evaluations of the likelihood. So, whilst A′n,m and Ãn appear more efficient in their use of samples,

their theoretical computational complexity is not different to An,m.
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Here, we focus on analysing the estimator An,m. Our results reaffirm previous analysis by Rainforth

et al. (2018); Zheng et al. (2018); Beck et al. (2018). We focus on a rigorous approach to using Taylor’s

Theorem for the logarithm. Our techniques can then be used to analyse other estimators.

Theorem 7.1 (Expectation of An,m). Suppose there exist Hölder conjugate indices p, q > 0 with 1/p+

1/q = 1 such that

Ep(x)p(y)

[(
p(y|x)

p(y)

)3p
]
<∞ and Ep(x)p(y)

[∣∣∣∣log
p(y|x)

p(y)

∣∣∣∣
q]
<∞. (7.50)

Then we have

E[An,m] = I(x,y) +
1

m
Ep(y)

[
Varp(x)[p(y|x)]

2p(y)2

]
+O

(
m−3/2

)
. (7.51)

Proof. By linearity, E[An,m] = E[A1,m]. To compute this expectation, we define

Uj =
p(y1|x1j)

p(y1)
. (7.52)

with E[Uj ] = E[E[Uj |y1]] = 1. Then,

A1,m = log
p(y1|x1)

p(y1)
− log


 1

m

m∑

j=1

Uj


 , (7.53)

giving

E[An,m] = I(x,y)− E


log


 1

m

m∑

j=1

Uj




 . (7.54)

The standard approach to analysing the second term is to apply Taylor’s Theorem to the logarithm

function. However, a naive application does not work for several reasons: a) the Taylor series for the

logarithm about 1 is convergent only on (0, 2) rather than (0,∞), b) the derivatives of the logarithm

are not bounded at 0, so the classical Delta Method (Lemma 7.9) does not apply. To get around these

problems, we define the partial Taylor series

Lk(x) =
k∑

j=1

(−1)j+1

j
(x− 1)j , (7.55)

in Lemma 7.10, we prove that | log x− Lk(x)| ≤ |x− 1|k+1 max(1,− log x) on (0,∞). Taking k = 2, we

have

E


log


 1

m

m∑

j=1

Uj




 = −1

2
E





 1

m

m∑

j=1

(Uj − 1)




2

+ E[ε] (7.56)
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and

|E[ε]| ≤ E[|ε|] ≤ E




∣∣∣∣∣∣
1

m

m∑

j=1

(Uj − 1)

∣∣∣∣∣∣

3

max


1,− log


 1

m

m∑

j=1

Uj







 (7.57)

applying Hölder’s Inequality

≤ E




∣∣∣∣∣∣
1

m

m∑

j=1

(Uj − 1)

∣∣∣∣∣∣

3p



1/p

E


max


1,− log


 1

m

m∑

j=1

Uj





q


1/q

. (7.58)

We tackle each term separately. Since the Uj are i.i.d conditional on y1, we can apply Corollary 7.8

that uses the Marcinkiewicz–Zygmund Inequality, and the Tower Law to conclude that there is a finite

constant D3p such that

E




∣∣∣∣∣∣
1

m

m∑

j=1

(Uj − 1)

∣∣∣∣∣∣

3p



1/p

≤ D1/p
3p m

−3/2E
[
|U1 − 1|3p

]1/p (7.59)

and

E
[
|U1 − 1|3p

]
≤ 1 + Ep(x)p(y)

[(
p(y|x)

p(y)

)3p
]
<∞ by assumption. (7.60)

So this term is O(m−3/2). For the latter term, we use the fact that x 7→ max(1,− log x) is a convex

function. Thus

E


max


1,− log


 1

m

m∑

j=1

Uj





q


1/q

≤ E


 1

m

m∑

j=1

max (1,− log (Uj))
q




1/q

(7.61)

= E [max (1,− log (U1))
q
]
1/q (7.62)

≤ (1 + E[| logU1|q])1/q (7.63)

=

(
1 + Ep(x)p(y)

[∣∣∣∣log
p(y|x)

p(y)

∣∣∣∣
q])1/q

(7.64)

<∞ by assumption. (7.65)

Overall, we have E[ε] = O(m−3/2). Finally,

1

2
E





 1

m

m∑

j=1

(Uj − 1)




2

 =

1

2m
Ep(y)

[
Ep(x)

[(
p(y|x)

p(y)
− 1

)2
]]

=
1

m
Ep(y)

[
Varp(x)[p(y|x)]

2p(y)2

]
. (7.66)

This completes the proof.

A simple application of Jensen’s Inequality further shows that E[An,m] ≥ I(x,y) for every value of n and

m. Put another way, the NMC estimator is always a stochastic upper bound on the mutual information
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with bias of order 1/m. Zheng et al. (2018) showed that the coefficient of the 1/m term is

Ep(y)

[
Varp(x)[p(y|x)]

2p(y)2

]
=

1

2
Ep(x)p(y)

[(
p(x,y)

p(x)p(y)
− 1

)2
]

(7.67)

which is the χ2-divergence from p(x,y) to p(x)p(y).

Theorem 7.2 (Variance of An,m). Assume that there exist Hölder conjugate indices p, q > 0 such that

Ep(x)p(y)

[(
p(y|x)

p(y)

)3p
]
<∞ and Ep(x)p(y)

[∣∣∣∣log
p(y|x)

p(y)

∣∣∣∣
2q
]
<∞. (7.68)

Then,

Var[An,m] =
1

n
Varp(x,y)

[
log

p(y|x)

p(y)

]

+
1

nm

(
Ep(y)

[
Varp(x)[p(y|x)]

p(y)2

]
+ Covp(x,y)

[
log

p(y|x)

p(y)
,

Varp(x′)[p(y|x′)]
p(y)2

])

+O
(
n−1m−3/2

)
.

(7.69)

Proof. We have

Var[An,m] =
1

n
Var[A1,m]. (7.70)

For the variance of A1,m, we use the Tower Law for the Variance

Var[A1,m] = E[Var[A1,m|x1,y1]] + Var[E[A1,m|x1,y1]]. (7.71)

For the conditional variance, we follow the proof of Theorem 7.1 to see that

E [Var[A1,m|x1,y1]] = E


Var


log


 1

m

m∑

j=1

Uj



∣∣∣∣∣y1




 where Uj =

p(y1|x1j)

p(y1)
(7.72)

We will the form of the variance Var[A] = E[A2] − E[A]2. We now study the function x 7→ log(x)2.

Taylor’s Theorem suggests that log x = (x−1)2 + ..., but as before, we aim for a more rigorous approach.

We have

| log(x)2 − (x− 1)2| = |(log x− x+ 1)(log x+ x− 1)| ≤ | log x− x+ 1|| log x+ x− 1|. (7.73)

Using Lemma 7.10, we can show | log x− x+ 1| ≤ |x− 1|2 max(1,− log x). It is also elementary to check

that | log x+ x− 1| ≤ 3|x− 1|max(1,− log x). Hence

| log(x)2 − (x− 1)2| ≤ 3|x− 1|3 max(1,− log x)2. (7.74)
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We can now return to computing the conditional expectation of equation (7.72). We have

E


E


log


 1

m

m∑

j=1

Uj




2 ∣∣∣∣∣y1





 = E





 1

m

m∑

j=1

(Uj − 1)




2

+ E[η] (7.75)

where our recent result guarantees that

|E[η]| ≤ E[|η|] ≤ 3E




∣∣∣∣∣∣
1

m

m∑

j=1

(Uj − 1)

∣∣∣∣∣∣

3

max


1,− log


 1

m

m∑

j=1

Uj






2

 . (7.76)

Without reproducing all the details, the approach of Theorem 7.1 shows us that this error term is

O(m−3/2) provided that

Ep(x)p(y)

[(
p(y|x)

p(y)

)3p
]
<∞ and Ep(x)p(y)

[∣∣∣∣log
p(y|x)

p(y)

∣∣∣∣
2q
]
<∞ (7.77)

where p, q are Hölder conjugate indices. Theorem 7.1 also shows that

E


E


log


 1

m

m∑

j=1

Uj



∣∣∣∣∣y1




2

 = O(m−2). (7.78)

Putting these pieces together, we have

E [Var[A1,m|x1,y1]] =
1

m
Ep(y)

[
Varp(x)[p(y|x)]

p(y)2

]
+O(m−3/2). (7.79)

Turning to the variance of the conditional expectation, recall from Theorem 7.1 that

E [A1,m|x1,y1] = log
p(y1|x1)

p(y1)
+

1

m

Varp(x)[p(y1|x)]

2p(y1)2
+O

(
m−3/2

)
. (7.80)

Taking the variance gives

Var [E [A1,m|x1,y1]] = Varp(x,y)

[
log

p(y|x)

p(y)

]
+

1

m
Cov

(
log

p(y|x)

p(y)
,

Varp(x′)[p(y|x′)]
p(y)2

)
+O(m−3/2).

(7.81)

Thus,

Var[A1,m] = Varp(x,y)

[
log

p(y|x)

p(y)

]

+
1

m

(
Ep(y)

[
Varp(x)[p(y|x)]

p(y)2

]
+ Covp(x,y)

(
log

p(y|x)

p(y)
,

Varp(x′)[p(y|x′)]
p(y)2

))
+O(m−3/2)

(7.82)

and the full result follows.
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Combining the last two theorems establishes that

E
[
|An,m − I(x,y)|2

]
= O

(
1

n
+

1

m2

)
. (7.83)

The computational cost of An,m is O(mn). Thus it is optimal to set m ∝ √n. Then the estimator

converges to I(x,y) at a rate T−1/3 in root mean square, where T is the total computational budget.

Finally, in the case that p(y|x) is not known, we can repeat this analysis using a positive function κ(x,y)

in its place. In this case,

A(κ)
n,m → Ep(x,y)

[
log

κ(x,y)

κ(y)

]
as m,n→∞ (7.84)

where κ(y) = Ep(x)[κ(x,y)]. The same convergence rates apply.

7.4.3 Prior Contrastive Estimation and InfoNCE

We now consider the Prior Contrastive Estimation (PCE) estimator (Foster et al., 2020)

Bn,m =
1

n

n∑

i=1

log
p(yi|xi)

1
m+1

(
p(yi|xi) +

∑m
j=1 p(yi|xij)

) . (7.85)

where xi,yi
i.i.d.∼ p(x,y) and xij

i.i.d.∼ p(x) are independent. We can also re-use samples to make the

variant

B̃n =
1

n

n∑

i=1

log
p(yi|xi)

1
n

∑n
j=1 p(yi|xj)

. (7.86)

It is more common to utilise this estimator in the case that p(y|x) is not known, leading to the InfoNCE

estimator (van den Oord et al., 2018)

B̃(κ)
n =

1

n

n∑

i=1

log
κ(xi,yi)

1
n

∑n
j=1 κ(xj ,yi)

(7.87)

for some positive function κ. Here, we focus on analysing the estimator Bn,m.

Before computing the asymptotic expansion of Bn,m, we present a basic result on its expectation.

Proposition 7.3 (Bounding the expectation of Bn,m). Assume

Ep(x,y)

[
p(y|x)

p(y)

]
<∞. (7.88)

Then,

0 ≤ I(x,y)− E[Bn,m] ≤ 1

m+ 1
Ep(x,y)

[
p(y|x)

p(y)
− 1

]
. (7.89)

This shows Bm,n is negatively biased with bias of order 1/m.

Proof. See Theorems 1 and 3 of Foster et al. (2020).
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Theorem 7.4 (Expectation of Bn,m). Suppose there exist Hölder conjugate indices p, q > 0 with 1/p+

1/q = 1 such that

Ep(x)p(y)

[(
p(y|x)

p(y)

)3p
]
<∞ and Ep(x)p(y)

[∣∣∣∣log
p(y|x)

p(y)

∣∣∣∣
q]
<∞. (7.90)

Then we have

E[Bn,m] =I(x,y)

− 1

m
Ep(x,y)

[
p(y|x)

p(y)
− 1

]
+

1

m
Ep(x,y)

[
Varp(x′)[p(y|x′)]

2p(y)2

]

+O
(
m−3/2

)
.

(7.91)

Proof. By linearity, E[Bn,m] = E[B1,m]. To compute this we define Uj as in Theorem 7.1, and we define

U0 = p(x1|y1)/p(y1). We have

E[B1,m] = I(x,y)− E


log


 1

m+ 1

m∑

j=0

Uj




 . (7.92)

To reduce this to a more manageable form, we have

E


log


 1

m+ 1

m∑

j=0

Uj




 = log

(
m

m+ 1

)
+ E


log


1 +

U0

m
+

1

m

m∑

j=1

(Uj − 1)




 (7.93)

= log

(
m

m+ 1

)
+ E

[
log

(
1 +

U0

m

)]
+ E


log


1 +

1

m

m∑

j=1

Uj − 1

1 + U0/m




 .

(7.94)

Here, the third term involves a sum of conditionally i.i.d. random variables with mean zero. We now

expand this third term with Taylor’s Theorem

E


log


1 +

1

m

m∑

j=1

Uj − 1

1 + U0/m




 = −1

2
E





 1

m

m∑

j=1

Uj − 1

1 + U0/m




2

+ E[ζ] (7.95)

We focus on controlling the ζ term. By Lemma 7.10 with k = 2 we have

|ζ| ≤

∣∣∣∣∣∣
1

m

m∑

j=1

Uj − 1

1 + U0/m

∣∣∣∣∣∣

3

max


1,− log


1 +

1

m

m∑

j=1

Uj − 1

1 + U0/m




 . (7.96)

Since U0 > 0, we must have ∣∣∣∣
Uj − 1

1 + U0/m

∣∣∣∣ ≤ |Uj − 1|, (7.97)

thus we can bound E[|ζ|] by the exact error term that was considered in Theorem 7.1. This shows that
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E[|ζ|] = O(m−3/2). To calculate the expectation, we have

E





 1

m

m∑

j=1

Uj − 1

1 + U0/m




2

 = E


E





 1

m

m∑

j=1

Uj − 1

1 + U0/m




2 ∣∣∣∣∣x1,y1





 (7.98)

=
1

m
Ep(x,y)

[
1

1 + U0/m

Varp(x′)[p(y|x′)]
p(y)2

]
(7.99)

=
1

m
Ep(x,y)


 1

1 + p(y|x)
mp(y)

Varp(x′)[p(y|x′)]
p(y)2


 , (7.100)

this form offers easy comparison with Theorem 7.1. However, we have

1

1 + p(y|x)
mp(y)

= 1 +O(m−1) (7.101)

and so we can drop the extract factor, giving

E





 1

m

m∑

j=1

Uj − 1

1 + U0/m




2

 =

1

m
Ep(x,y)

[
Varp(x′)[p(y|x′)]

p(y)2

]
+O(m−2) (7.102)

We also need to expand

log

(
m

m+ 1

)
+ E

[
log

(
1 +

U0

m

)]
= E

[
log

(
1 +

U0 − 1

m+ 1

)]
(7.103)

= E
[
U0 − 1

m+ 1

]
+O(m−3/2) (7.104)

=
1

m+ 1
Ep(x,y)

[
p(y|x)

p(y)
− 1

]
+O(m−3/2) (7.105)

=
1

m
Ep(x,y)

[
p(y|x)

p(y)
− 1

]
+O(m−3/2) as the difference is order m−2.

(7.106)

Combining these gives the result.

Theorem 7.5 (Variance of Bm,n). Assume that there exist Hölder conjugate indices p, q > 0 such that

Ep(x)p(y)

[(
p(y|x)

p(y)

)3p
]
<∞ and Ep(x)p(y)

[∣∣∣∣log
p(y|x)

p(y)

∣∣∣∣
2q
]
<∞. (7.107)

Then,

Var[Bn,m] =
1

n
Varp(x,y)

[
log

p(y|x)

p(y)

]

+
1

nm
Ep(x,y)

[
Varp(x′)[p(y|x′)]

2p(y)2

]

+
1

nm
Covp(x,y)

[
log

p(y|x)

p(y)
,−2p(y|x)

p(y)
+

Varp(x′)[p(y|x′)]
p(y)2

]

+O
(
n−1m−3/2

)
.

(7.108)
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Proof. We proceed using the same general strategy as Theorem 7.2. We have

Var[Bn,m] =
1

n
Var[B1,m]. (7.109)

By Tower Law,

Var[B1,m] = E[Var[B1,m|x1,y1]] + Var[E[B1,m|x1,y1]]. (7.110)

For the conditional variance, using the notation of Theorem 7.4 we have

E[Var[B1,m|x1,y1]] =E


E


log


1 +

1

m

m∑

j=1

Uj − 1

1 + U0/m




2 ∣∣∣∣∣x1,y1







− E


E


log


1 +

1

m

m∑

j=1

Uj − 1

1 + U0/m



∣∣∣∣∣x1,y1




2

 .

(7.111)

For the first term of this variance, we use the analysis of x 7→ log(x)2 that was done in Theorem 7.2

showing

| log(x)2 − (x− 1)2| ≤ |x− 1|3 max(1,− log x)2. (7.112)

Thus,

E


E


log


1 +

1

m

m∑

j=1

Uj − 1

1 + U0/m




2 ∣∣∣∣∣x1,y1





 = E





1 +

1

m

m∑

j=1

Uj − 1

1 + U0/m




2

+ E[ν] (7.113)

231



where

|E[ν]| ≤ E[|ν|] ≤ E




∣∣∣∣∣∣
1

m

m∑

j=1

Uj − 1

1 + U0/m

∣∣∣∣∣∣

3

max


1,− log


 1

m

m∑

j=1

Uj − 1

1 + U0/m






2

 (7.114)

Hölder
≤ E




∣∣∣∣∣∣
1

m

m∑

j=1

Uj − 1

1 + U0/m

∣∣∣∣∣∣

3p



1/p

E


max


1,− log


 1

m

m∑

j=1

Uj − 1

1 + U0/m






2q



1/q

(7.115)

≤ E




∣∣∣∣∣∣
1

m

m∑

j=1

Uj − 1

∣∣∣∣∣∣

3p



1/p

E


max


1,− log


 1

m

m∑

j=1

Uj − 1






2q



1/q

(7.116)

Corollary 7.8
≤ D

1/p
3p m

−3/2E
[
|U1 − 1|3p

]1/p
E


max


1,− log


 1

m

m∑

j=1

Uj − 1






2q



1/q

(7.117)
convexity
≤ D

1/p
3p m

−3/2E
[
|U1 − 1|3p

]1/p (
1 + E

[
| logU1|2q

])1/q (7.118)

≤ D1/p
3p m

−3/2Ep(x)p(y)

[(
p(y|x)

p(y)

)3p
]1/p(

1 + Ep(x)p(y)

[∣∣∣∣log
p(y|x)

p(y)

∣∣∣∣
2q
])1/q

. (7.119)

We also have, as previously

E





1 +

1

m

m∑

j=1

Uj − 1

1 + U0/m




2

 =

1

m
Ep(x,y)

[
Varp(x′)[p(y|x′)]

2p(y)2

]
+O(m−2). (7.120)

On the other hand, Theorem 7.4 shows that

E


E


log


1 +

1

m

m∑

j=1

Uj − 1

1 + U0/m



∣∣∣∣∣x1,y1




2

 = O(m−2). (7.121)

We can now turn to the variance of the conditional expectation. From Theorem 7.4, we know

E[B1,m|x1,y1] = log
p(y1|x1)

p(y1)
+

1

m

(
1− p(y|x)

p(y)
+

Varp(x′)[p(y|x′)]
2p(y)2

)
+O

(
m−3/2

)
. (7.122)

Thus,

Var[E[B1,m|x1,y1]] = Varp(x,y)

[
log

p(y|x)

p(y)

]

+
1

m
Covp(x,y)

[
log

p(y|x)

p(y)
,−2p(y|x)

p(y)
+

Varp(x′)[p(y|x′)]
p(y)2

]

+O
(
m−3/2

)
.

(7.123)

Putting the pieces together gives the final result.
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Finally, we note the key difference between the variance of the NMC and PCE estimators is the term

− 1

nm
Covp(x,y)

[
log

p(y|x)

p(y)
,

2p(y|x)

p(y)

]
. (7.124)

We would expect the covariance between a random variable and its logarithm to be positive, indicating

that this term as a whole is negative. This, in turn, suggests that the PCE estimator has a lower variance

than its NMC counterpart. However, focusing on the dominant terms, we still have the same overall

NMC convergence rate of T−1/3 in the total computational budget T .

7.4.4 Multi-level Monte Carlo

The following section covers material in Goda et al. (2020a), with Goda et al. (2020b) covering the

extension to gradient estimators.

To begin, we define the random variables using the NMC estimator An,m as our base

P` = A1,M`
(7.125)

where M` is an increasing sequence of positive integers. From previous remarks, we know that E[P`]→
I(x,y) as `→∞. We now take M` = M02`. We define the random variables Z` as follows

Z` =− log


 1

M`

M∑̀

j=1

p(y1|x1j)




+
1

2


log


 1

M`−1

M`−1∑

j=1

p(y1|x1j)


+ log


 1

M`−1

M∑̀

j=1+M`−1

p(y1|x1j)




 .

(7.126)

The key property of Z` is

E[Z`] = E[P` − P`−1] (7.127)

and the cost of computing Z` is bounded by c2`. The main technical challenge is to bound the expectation

and variance of Z`. We have the following theorem.

Theorem 7.6 (Goda et al. (2020a)). Suppose there exist constants p, q > 2 such that (p− 2)(q− 2) ≥ 4

such that

Ep(x)p(y)

[∣∣∣∣
p(y|x)

p(y)

∣∣∣∣
p]
<∞ and Ep(x)p(y)

[∣∣∣∣log
p(y|x)

p(y)

∣∣∣∣
q]
<∞. (7.128)

Then,

E [|Z`|] = O(2−a`), Var(Z`) = O(2−r`) (7.129)

where a = min
(
p(q−1)

2q , 1
)
, r = min

(
p(q−2)

2q , 2
)
.
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Proof. First, define

β
(a)
` =

1

M`

M∑̀

j=1

p(y1|x1j)

p(y1)
(7.130)

β
(b)
` =

1

M`

M`+1∑

j=1+M`

p(y1|x1j)

p(y1)
(7.131)

so Z` = − log β
(a)
` +

1

2

(
log β

(a)
`−1 + log β

(b)
`−1

)
(7.132)

and β
(a)
` =

1

2

(
β

(a)
`−1 + β

(b)
`−1

)
. (7.133)

We then have

Z` = − log β
(a)
` +

1

2

(
log β

(a)
`−1 + log β

(b)
`−1

)
(7.134)

= −
(

log β
(a)
` − β(a)

` + 1
)

+
1

2

(
log β

(a)
`−1 − β

(a)
`−1 + 1

)
+

1

2

(
log β

(b)
`−1 − β

(b)
`−1 + 1

)
(7.135)

= 2

[
−1

2

(
log β

(a)
` − β(a)

` + 1
)

+
1

4

(
log β

(a)
`−1 − β

(a)
`−1 + 1

)
+

1

4

(
log β

(b)
`−1 − β

(b)
`−1 + 1

)]
(7.136)

By convexity of x 7→ |x|2, we have

|Z`|2 ≤ 2
∣∣∣log β

(a)
` − β(a)

` + 1
∣∣∣
2

+
∣∣∣log β

(a)
`−1 − β

(a)
`−1 + 1

∣∣∣
2

+
∣∣∣log β

(b)
`−1 − β

(b)
`−1 + 1

∣∣∣
2

. (7.137)

We use the following elementary inequality that holds for 1 ≤ r ≤ 2

| log x− x+ 1| ≤ |x− 1|r max(− log x, 1) (7.138)

which gives ∣∣∣log β
(a)
` − β(a)

` + 1
∣∣∣
2

≤
∣∣∣β(a)
` − 1

∣∣∣
2r (

max
(
− log β

(a)
` , 1

))2

. (7.139)

We now take the expectation and apply Hölder’s Inequality with 1/s+ 1/t = 1, giving

E
[∣∣∣log β

(a)
` − β(a)

` + 1
∣∣∣
2
]
≤
∥∥∥∥
∣∣∣β(a)
` − 1

∣∣∣
2r
∥∥∥∥
Ls

∥∥∥∥
(

max
(
− log β

(a)
` , 1

))2
∥∥∥∥
Lt

. (7.140)

For the first term, we apply Corollary 7.8 to conclude that

∥∥∥∥
∣∣∣β(a)
` − 1

∣∣∣
2r
∥∥∥∥
Ls

≤ D1/s
2rsEp(x)p(y)

[∣∣∣∣
p(y|x)

p(y)

∣∣∣∣
2sr
]1/s

(M02`)−r, (7.141)

for the second term, we use the fact that the functions x 7→ max(− log x, 1) and x 7→ x2t are convex to
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give

∥∥∥∥
(

max
(
− log β

(a)
` , 1

))2
∥∥∥∥
Lt

≤

∥∥∥∥∥∥∥


 1

M`

M∑̀

j=1

max

(
− log

p(y1|x1j)

p(y1)
, 1

)


2
∥∥∥∥∥∥∥
Lt

(7.142)

=


E





 1

M`

M∑̀

j=1

max

(
− log

p(y1|x1j)

p(y1)
, 1

)


2t






1/t

(7.143)

≤


 1

M`
E



M∑̀

j=1

max

(
− log

p(y1|x1j)

p(y1)
, 1

)2t





1/t

(7.144)

≤


 1

M`
E



M∑̀

j=1

∣∣∣∣log
p(y1|x1j)

p(y1)

∣∣∣∣
2t

+ 1






1/t

(7.145)

= Ep(x)p(y)

[∣∣∣∣log
p(y|x)

p(y)

∣∣∣∣
2t

+ 1

]1/t

. (7.146)

We now choose s = q/(q − 2), t = q/2 and r = min(p(q − 2)/2q, 2). This gives

E
[∣∣∣log β

(a)
` − β(a)

` + 1
∣∣∣
2
]
≤ A02−r` (7.147)

where

A0 = D
1/s
2rsEp(x)p(y)

[∣∣∣∣
p(y|x)

p(y)

∣∣∣∣
p]1/s

Ep(x)p(y)

[∣∣∣∣log
p(y|x)

p(y)

∣∣∣∣
q

+ 1

]1/t

M−r0 . (7.148)

Since we can bound the other two terms of (7.137) in a similar way, we obtain a bound on Var(Z`) that

is of order 2−r`. A similar proof gives the bound for E[|Z`|].

An important result of this theorem is that we can obtain a MLMC estimator of I(x,y) with total

cost T that converges at a rate O(T−1/2) in root mean square. This is achieved using standard MLMC

technology (Giles, 2008). We define, analogously to the NMC case

Zn,` =
1

n

n∑

i=1


− log


 1

M`

M∑̀

j=1

p(yi|xij)




+
1

2


log


 1

M`−1

M`−1∑

j=1

p(yi|xij)


+ log


 1

M`−1

M∑̀

j=1+M`−1

p(yi|xij)






 .

(7.149)

Then

ZMLMC
L =

L∑

`=0

ZN`,` (7.150)

with

E
[∣∣ZMLMC

L − I(x,y)
∣∣2
]

=

L∑

`=0

Var[Z`]

N`
+ [E[PL]− I(x,y)]

2
. (7.151)

The cost of the estimator ZMLMC
L is O(NLML). What Theorem 7.6 shows is that the bias and variance

of the Z` decay fast enough to offset the growth in cost. For full details, see Goda et al. (2020a).
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7.4.5 A rigorous delta method for the natural logarithm

This self-contained section includes some of the mathematical machinery that is relied upon by the rest

of this work. As previously mentioned, most analyses of mutual information estimators (Zheng et al.,

2018; Beck et al., 2018; Rainforth et al., 2018) utilise the delta method for moments. Unfortunately, the

standard delta method that we derive here in Lemma 7.9 is not valid for the natural logarithm function,

because none of its derivatives are bounded on (0,∞). In this section, we derive a rigorous delta method

for the logarithm. Whilst this is not sufficient for all the Theorems in the preceding sections, it highlights

and essentialises the key technical pieces required.

We begin with the Marcinkiewicz–Zygmund Inequality, which is used to derive the standard delta method.

Lemma 7.7 (Marcinkiewicz and Zygmund (1937)). Let X1, . . . , Xm be independent random variables

with E[Xi] = µ and E [|Xi|p] <∞. Then there exists a constant Dp such that

E

(∣∣∣∣∣
m∑

i=1

(Xi − µ)

∣∣∣∣∣

p)
≤ DpE



(

m∑

i=1

|Xi|2
)p/2

 (7.152)

Corollary 7.8. Let X1, . . . , Xm be i.i.d. random variables with E[X1] = µ and E [|X1|p] < ∞. Then

there exists a constant Dp such that

E

(∣∣∣∣∣
1

m

m∑

i=1

(Xi − µ)

∣∣∣∣∣

p)
≤ Dpm

−p/2E [|X1|p] (7.153)

Proof. Applying the Marcinkiewicz–Zygmund Inequality, we have

E

(∣∣∣∣∣
1

m

m∑

i=1

(Xi − µ)

∣∣∣∣∣

p)
≤ Dpm

−p/2E



(

1

m

m∑

i=1

|Xi|2
)p/2

 , (7.154)

by the convexity of x 7→ xp/2 on (0,∞), we have

≤ Dpm
−p/2E

(
1

m

m∑

i=1

|Xi|p
)

(7.155)

= Dpm
−p/2E [|X1|p] . (7.156)

Notice that Corollary 7.8 essentially gives the asymptotic moments that would be expected from the

Central Limit Theorem, although they cannot be derived from the standard Central Limit Theorem

which gives convergence in distribution only.

Lemma 7.9 (Delta method of order k). Let Xi be a sequence of i.i.d. random variables with mean µ
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and E
[
|X1|k+1

]
<∞, and let f be a smooth function with ‖f (k+1)‖∞ = M <∞. Then

E

[
f

(
1

m

m∑

i=1

Xi

)]
=

k∑

j=0

f (j)(µ)

j!
E



(

1

m

m∑

i=1

(Xi − µ)

)j
+O

(
m−(k+1)/2

)
. (7.157)

Proof. By Taylor’s Theorem with Lagrange’s form of the remainder, we have for any x and for some ξ

between x and µ

f(x) =

k∑

j=0

f (j)(µ)

j!
(x− µ)k +

f (k+1)(ξ)

(k + 1)!
(x− µ)k+1. (7.158)

Applying this to 1
m

∑m
i=1Xi and taking the expectation gives

E

[
f

(
1

m

m∑

i=1

Xi

)]
=

k∑

j=0

f (j)(µ)

j!
E



(

1

m

m∑

i=1

(Xi − µ)

)j
+ E


f

(k+1)(Ξ)

(k + 1)!

(
1

m

m∑

i=1

(Xi − µ)

)k+1



(7.159)

where Ξ is a random variable between µ and 1
m

∑
iXi. By assumption, we have f (k+1)(Ξ) ≤ M . By

Corollary 7.8, we have

E



∣∣∣∣∣
∑

i=1

Xi − µ
∣∣∣∣∣

k+1

 ≤ Dk+1m

(k+1)/2E
[
|X1|k+1

]
. (7.160)

Hence we conclude that

∣∣∣∣∣∣
E


f

(k+1)(Ξ)

(k + 1)!

(
1

m

m∑

i=1

(Xi − µ)

)k+1


∣∣∣∣∣∣
≤ MDk+1E

[
|X1|k+1

]
m−(k+1)/2

(k + 1)!
= O(m−(k+1)/2). (7.161)

We now turn to the logarithm function in particular, bounding the difference between the function and

its series approximation.

Lemma 7.10. Define

Lk(x) =

k∑

j=1

(−1)j+1

j
(x− 1)j . (7.162)

Then | log x− Lk(x)| ≤ |x− 1|k+1 max(1,− log x) for 0 < x <∞.

Proof. By Taylor’s Theorem with Cauchy’s form of the remainder, for any 0 < x <∞ there exists ξ that

is between 1 and x such that

log x = Lk(x) +
(−1)k+2

ξk+1
(x− ξ)k(x− 1) (7.163)

For x > 1, we must have ξk+1 > 1, so | log x− Lk(x)| < |x− ξ|k|x− 1| < |x− 1|k+1.
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For x ≤ 1, we have

ξ − x
ξ

= 1− x/ξ and 0 ≤ 1− x/ξ ≤ 1− x since x ≤ ξ ≤ 1. (7.164)

Thus, the magnitude of the remainder term becomes

∣∣∣∣
(−1)k+2

ξk+1
(x− ξ)k(x− 1)

∣∣∣∣ =

∣∣∣∣∣

(
ξ − x
ξ

)k
x− 1

ξ

∣∣∣∣∣ ≤ (1− x)k
∣∣∣∣
x− 1

ξ

∣∣∣∣ ≤
(1− x)k+1

x
(7.165)

which shows that the Taylor series for the logarithm is convergent on (0, 1]. Therefore, we have

log x− Lk(x) =

∞∑

j=k+1

(−1)j+1

j
(x− 1)j (7.166)

= (x− 1)k+1(−1)k


 1

k + 1
−
∞∑

j=1

(−1)j+1

k + 1 + j
(x− 1)j


 (7.167)

noting that x− 1 ≤ 0 we see that each term of the sum has the same sign, giving

= −|x− 1|k+1


 1

k + 1
+

∞∑

j=1

1

k + 1 + j
|x− 1|j


 . (7.168)

If x ≥ e−1, we have

1

k + 1
+

∞∑

j=1

1

k + 1 + j
|x− 1|j ≤ 1

k + 1
+

∞∑

j=1

1

k + 1 + j
|e− 1|j (7.169)

by monotonicity. If x ≤ e−1, we have

1

k + 1
+

∞∑

j=1

1

k + 1 + j
|x− 1|j ≤ 1

k + 1
+
|x− 1|
k + 2

+

∞∑

j=2

|x− 1|j
k + 1 + j

(7.170)

≤ |x− 1|+
∞∑

j=2

|x− 1|j
j

= − log x, (7.171)

for any k ≥ 1. Combining these, we have

1

k + 1
+

∞∑

j=1

1

k + 1 + j
|x− 1|j ≤ max(− log x, log e) = max(− log x, 1). (7.172)

For the following Proposition, the logic is inspired by Goda et al. (2020a).

Proposition 7.11 (Rigorous delta method for the logarithm). Let U1, . . . , Um be a sequence of i.i.d. pos-

itive random variables with E[U1] = 1. Fix a natural number k ≥ 1. Suppose that for Hölder conjugate
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indices p, q > 0 with 1/p+ 1/q = 1, we have E
[
U

(k+1)p
1

]
<∞ and E[| logU1|q] <∞. Then,

E

[
log

(
1

m

m∑

i=1

Ui

)]
=

k∑

j=2

(−1)j+1

j
E



(

1

m

m∑

i=1

(Ui − 1)

)j
+ Ek (7.173)

where Ek = O
(
m−(k+1)/2

)
.

Proof. Define Lk as in Lemma 7.10. By that Lemma, we have

∣∣∣∣∣log

(
1

m

m∑

i=1

Ui

)
− Lk

(
1

m

m∑

i=1

Ui

)∣∣∣∣∣ ≤
∣∣∣∣∣

1

m

m∑

i=1

Ui

∣∣∣∣∣

k+1

max

(
− log

(
1

m

m∑

i=1

Ui

)
, 1

)
. (7.174)

We see that

E

[
Lk

(
1

m

m∑

i=1

Ui

)]
=

k∑

j=1

(−1)j+1

j
E



(

1

m

m∑

i=1

(Ui − 1)

)j
 (7.175)

and E[Ui − 1] = 0.

The error term Ek is bounded in L1 by

E[|Ek|] ≤ E



∣∣∣∣∣

1

m

m∑

i=1

Ui

∣∣∣∣∣

k+1

max

(
− log

(
1

m

m∑

i=1

Ui

)
, 1

)
 (7.176)

apply Hölder’s Inequality to give

≤ E



∣∣∣∣∣

1

m

m∑

i=1

Ui

∣∣∣∣∣

p(k+1)



1/p

E

[
max

(
− log

(
1

m

m∑

i=1

Ui

)
, 1

)q]1/q

. (7.177)

For the first term, Corollary 7.8 shows that

E



∣∣∣∣∣

1

m

m∑

i=1

Ui

∣∣∣∣∣

p(k+1)



1/p

≤ D1/p
(k+1)pm

−(k+1)/2E
[
U

(k+1)p
1

]1/p
(7.178)

for the second term we use the fact that x 7→ max(− log x, 1) is a convex function, so

max

(
− log

(
1

m

m∑

i=1

Ui

)
, 1

)q
≤ 1

m

m∑

i=1

max (− log (Ui) , 1)
q (7.179)

≤ 1

m

m∑

i=1

(| logUi|+ 1)
q
, (7.180)

hence

E

[
max

(
− log

(
1

m

m∑

i=1

Ui

)
, 1

)q]1/q

≤ (E [| logU1|q] + 1)
1/q

. (7.181)

239



By assumption, we have E
[
U

(k+1)p
1

]
<∞ and E [| logU1|q] <∞. Putting the pieces together, we have

E[|Ek|] ≤ m−(k+1)/2D
1/p
(k+1)pE

[
U

(k+1)p
1

]1/p
(E [| logU1|q] + 1)

1/q
, (7.182)

so Ek is O
(
m−(k+1)/2

)
as required.

Notice that we recover the regular delta method with logUi bounded if p = 1, q =∞.
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7.5 The generalized Donsker-Varadhan representation

7.5.1 Introduction

In this essay, we present a generalization of the classical Donsker-Varadhan representation of the KL-

divergence (Donsker and Varadhan, 1975). Our purpose is twofold. Firstly, the new representation

of the KL-divergence sheds further light on mutual information and may motivate the development

of new statistical estimators of information. Secondly, our new representation is a powerful tool that

connects a number of existing mutual information estimators under one umbrella. An important feature

of the generalized Donsker-Varadhan representation is that it includes self-normalized bounds such as

InfoNCE (van den Oord et al., 2018) as a special case, something which is not true of the classical

Donsker-Varadhan representation.

7.5.2 Information-theoretic quantities

Throughout machine learning, we have cause to consider the entropy of probability measure p

H (p) = Ep(x)[− log p(x)], (7.183)

the KL divergence between two probability measures p� q

KL (p ‖ q) = Ep(x)

[
log

p(x)

q(x)

]
(7.184)

and the mutual information between jointly distributed random variables x,y ∼ p(x,y)

I(x,y) = KL (p(x,y) ‖ p(x)p(y)) . (7.185)

These are foundational quantities in information theory (Shannon, 1948), Bayesian experimental design

(Lindley, 1956) and deep learning (Linsker, 1988). A key result in information theory is the following.

Theorem 7.12 (Gibbs’ Inequality). For any probability measures p� q, KL (p ‖ q) ≥ 0.

7.5.3 The Donsker-Varadhan representation

An important lower bound on the KL divergence is the Donsker-Varadhan (DV) representation.

Theorem 7.13 (Donsker and Varadhan (1975)). Let p� q be probability measures on X , then

KL (p ‖ q) = sup
T :X→R measurable

Ep(x)[T (x)]− log
(
Eq(x) [exp(T (x))]

)
(7.186)

One important bound that can be obtained as a consequence of the Donsker-Varadhan representation is

the following.
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Corollary 7.14 (Barber and Agakov (2003)). Let q(y|x) be a conditional distribution. Then

I(x,y) ≥ Ep(x,y)

[
log

q(y|x)

p(y)

]
(7.187)

Proof. Since mutual information is defined as a KL divergence, the DV representation is applicable. Let

T (x,y) = log q(x,y)/p(y) in Theorem 7.13. We have

Ep(x)p(y)[q(y|x)/p(y)] = 1 (7.188)

so the bound is self-normalized. The result follows.

The Barber-Agakov bound can be written as

I(x,y) ≥ Ep(x,y) [log q(y|x)] + H (p(y)) (7.189)

which can be helpful in cases in which the H (p(y)) term is unknown but also unneeded for e.g. gradient

estimation. Another bound, that appears in Nguyen et al. (2010); Nowozin et al. (2016); Belghazi

et al. (2018) has a connection to the theory of f -divergences. Applying the inequality log x ≤ e−1x to

Theorem 7.13 gives the NWJ bound

I(x,y) ≥ Ep(x)[T (x)]− e−1Eq(x) [exp(T (x))] . (7.190)

An advantage of this looser bound is that it can be directly estimated by samples.

7.5.4 A generalization of the Donsker-Varadhan representation

To generalize Theorem 7.13, suppose we extend the sample space to X × S, where S represents ‘side-

information’. Suppose we have a conditional distribution p(s|x). Then we can extend the Donsker-

Varadhan representation as follows.

Theorem 7.15 (Generalized Donsker-Varadhan representation). Under the assumptions of Theorem 7.13,

let p(s|x) be a valid conditional distribution for each x ∈ X . Then,

KL (p ‖ q) = sup
U :X×S→R measurable

Ep(x)p(s|x)[U(x, s)]− log
(
Eq(x)p(s|x) [exp(U(x, s))]

)
(7.191)

Proof. Since any function T : X → R can be extended to a new function on X × S by ignoring the side

information, Theorem 7.13 immediately tells us that

KL (p ‖ q) ≤ sup
U :X×S→R measurable

Ep(x)p(s|x)[U(x, s)]− log
(
Eq(x)p(s,x) [exp(U(x, s))]

)
. (7.192)
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To prove the ≥ inequality, we consider some measurable U : X × S → R. We have

KL (p ‖ q) = Ep(x)

[
log

p(x)

q(x)

]
(7.193)

= Ep(x)p(s|x)

[
log

p(x)p(s|x)

q(x)p(s|x)

]
(7.194)

define V (x, s) = exp(U(x, s))/Eq(x)p(s|x)[exp(U(x, s))]

= Ep(x)p(s|x)

[
log

p(x)p(s|x)

q(x)p(s|x)V (x, s)

]
+ Ep(x)p(s|x)[log V (x, s)] (7.195)

now note that by definition of V ,
∫
X×S q(x)p(x|s)V (x, s) = 1, so q(x)p(x|s)V (x, s) is a probability

measure

= KL (p(x)p(s|x) ‖ q(x)p(s|x)V (x|s)) + Ep(x)p(s|x)[log V (x, s)] (7.196)

now by Gibbs’ Inequality

≥ Ep(x)p(s|x)[log V (x, s)] (7.197)

= Ep(x)p(s|x)[U(x, s)]− log
(
Eq(x)p(s|x) [exp(U(x, s))]

)
. (7.198)

This completes the proof.

7.5.5 Self-normalized bounds

One particular use of Theorem 7.15 is for cases in which Ep(x)p(s|x) [exp(U(x, s))] = 1. For such a self-

normalized bound, the task of estimating the potentially high-dimensional term Eq(x)p(s|x) [exp(U(x, s))]

is removed, and the bound reduces to Ep(x)p(s|x)[U(x, s)] for which unbiased estimators can be constructed

directly from samples.

Theorem 7.16 (Self-normalized KL bound). Let k : X → R be any measurable function. Then we have

the following bound on the KL divergence

KL (p ‖ q) ≤ Ep(x1)q(x2)...q(xm)

[
log

exp(k(x1))
1
m

∑m
i=1 exp(k(xi))

]
. (7.199)

Proof. We apply Theorem 7.15 with x = x1, S = Xm−1, s = (x2, ...,xm) and p(s|x) = q(x2) · ... · q(xm)

is independent of x1. We have

U(x, s) = log
exp(k(x))

1
m

∑m
i=1 exp(k(xi))

(7.200)

To apply the theorem, we consider

Eq(x)p(s|x) [exp(U(x, s))] = Eq(x1)...q(xm)

[
exp(k(x))

1
m

∑m
i=1 exp(k(xi))

]
. (7.201)
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Since the x1, ...,xm are all equal in distribution, we can replace the index of the sample used in the

numerator by any j ∈ {1, ...,m}

= Eq(x1)...q(xm)

[
exp(k(xj))

1
m

∑m
i=1 exp(k(xi))

]
(7.202)

we can take the mean over all possible values of j

=
1

m

m∑

j=1

Eq(x1)...q(xm)

[
exp(k(xj))

1
m

∑m
i=1 exp(k(xi))

]
(7.203)

now by linearity of the expectation we have

= Eq(x1)...q(xm)

[
1
m

∑m
j=1 exp(k(xj))

1
m

∑m
i=1 exp(k(xi))

]
(7.204)

= 1. (7.205)

Thus the bound is self-normalized and the result follows.

We note that this bound cannot typically recover the KL divergence, because

log
exp(k(x1))

1
m

∑m
i=1 exp(k(xi))

≤ log
exp(k(x))

1
m exp(k(x))

= logm. (7.206)

We can apply a related idea to mutual information. The following theorem provides a self-normalized

bound on I(x,y) that is closely related to the popular InfoNCE (van den Oord et al., 2018) bound.

Theorem 7.17 (Self-normalized information bound). Let k : X × Y → R be any measurable function.

Then we have the following bound on the mutual information

I(x,y) ≤ Ep(x1,y1)p(x2)...p(xm)

[
log

exp(k(x1,y1))
1
m

∑m
i=1 exp(k(xi,y1))

]
. (7.207)

Proof. Since I(x,y) = KL (p(x,y) ‖ p(x)p(y)), we can apply Theorem 7.15. We set S = Xm−1 and

s = (x2, ...,xm). We have

U((x1,y1), s) = log
exp(k(x1,y1))

1
m

∑m
i=1 exp(k(xi,y1))

. (7.208)

To show that this bound is self-normalized, we consider

Ep(x1)p(y1)p(s)[exp(U((x1,y1), s))] = Ep(x1)...p(xm)p(y1)

[
exp(k(x1,y1))

1
m

∑m
i=1 exp(k(xi,y1))

]
, (7.209)

for any ` ∈ {1, ...,m}, we have

= Ep(x1)...p(xm)p(y1)

[
exp(k(x`,y1))

1
m

∑m
i=1 exp(k(xi,y1))

]
(7.210)

244



since the xi are all equal in distribution. Then,

=
1

m

m∑

`=1

Ep(x1)...p(xm)p(y1)

[
exp(k(x`,y1))

1
m

∑m
i=1 exp(k(xi,y1))

]
(7.211)

= Ep(x1)...p(xm)p(y1)

[ 1
m

∑m
`=1 exp(k(x`,y1))

1
m

∑m
i=1 exp(k(xi,y1))

]
(7.212)

= 1. (7.213)

This completes the proof.

Finally, it is possible to change the distribution that is used to generate s as long as we compensate with

importance weighting. The following theorem gives a bound that is closely connected to the likelihood-

free Adaptive Contrastive Estimation bound of Foster et al. (2020) eq. (14).

Theorem 7.18 (Importance weighted self-normalized information bound). Let k : X × Y → R be any

measurable function. Consider a conditional distribution q(x′|y) on X . Then we have the following

bound on the mutual information

I(x,y) ≤ Ep(x1,y1)q(x2|y1)...q(xm|y1)


log

exp(k(x1,y1))
1
m

∑m
i=1

exp(k(xi,y1))p(xi)
q(xi|y1)


 . (7.214)

Proof. Following the same strategy as the previous two proofs, we consider

Ep(x1)p(y1)p(s)[exp(U((x1,y1), s))] = Ep(x1)p(y1)q(x2:m|y1)


 exp(k(x1,y1))

1
m

∑m
i=1

exp(k(xi,y1))p(xi)
q(xi|y1)


 (7.215)

= Ep(y1)q(x1:m|y1)




exp(k(x1,y1))p(x1)
q(x1|y1)

1
m

∑m
i=1

exp(k(xi,y1))p(xi)
q(xi|y1)


 (7.216)

for any ` ∈ {1, ...,m}, we have

= Ep(y1)q(x1:m|y1)




exp(k(x`,y1))p(x`)
q(x`|y1)

1
m

∑m
i=1

exp(k(xi,y1))p(xi)
q(xi|y1)


 (7.217)

since the xi are all now equal in distribution. Then,

=
1

m

m∑

`=1

Ep(y1)q(x1:m|y1)




exp(k(x`,y1))p(x`)
q(x`|y1)

1
m

∑m
i=1

exp(k(xi,y1))p(xi)
q(xi|y1)


 (7.218)

= Ep(y1)q(x1:m|y1)




1
m

∑m
`=1

exp(k(x`,y1))p(x`)
q(x`|y1)

1
m

∑ exp(k(xi,y1))p(xi)

q(xi|y1)

i=1


 (7.219)

= 1. (7.220)

This completes the proof.
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A limitation of this bound is that we need to know the density p(x).
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7.6 Limitations

We conclude with a discussion on the limitations of the methods presented in this thesis.

7.6.1 Model misspecification

Given the heavily model-based nature of the Bayesian experimental design framework, model misspec-

ification is an important source of error across the field (Chaloner and Verdinelli, 1995; Feng et al.,

2015). Bayesian experimental design may be more sensitive to model misspecification than, for example,

Bayesian data analysis. To understand why this may be, consider the EIG criterion

I(ξ) = Ep(y|ξ)
[
Ep(θ|y,ξ)

[
log

p(θ|y, ξ)
p(θ)

]]
. (7.221)

Written in this way, we see that the EIG uses the model ‘twice’: once to simulate putative outcomes

y from the prior predictive distribution p(y|ξ) = Ep(θ)[p(y|θ, ξ)], and once to evaluate the information

gain in the model from observing outcome y under design ξ. Some authors have sought to reduce the

reliance on the prior predictive by defining an alternative EIG in which y is sampled from a distribution

other than p(y|ξ), see e.g. Ouyang et al. (2016); Overstall and McGree (2021). However, sampling y from

an alternative distribution sacrifices an important computational trick that arises when we rewrite the

objective as

I(ξ) = Ep(θ)
[
Ep(y|θ,ξ)

[
log

p(θ|y, ξ)
p(θ)

]]
. (7.222)

This equivalent form of EIG first samples θ from the prior, and subsequently samples y conditional

on θ. Thus, without performing Bayesian inference, we have one sample of θ from the true posterior

distribution; this is akin to root sampling in Bayesian reinforcement learning (Guez et al., 2012). This

trick is particularly helpful when we then replace the integrand with an estimate, such as in the ‘posterior’

estimator of EIG (Foster et al., 2019)

I(ξ) ≥ Ep(θ)
[
Ep(y|θ,ξ)

[
log

qφ(θ|y, ξ)
p(θ)

]]
. (7.223)

An unbiased estimator of this lower bound can be computed without the need to perform explicit Bayesian

inference. Variational and policy-based methods make extensive use of this trick of sampling from

p(θ)p(y|θ, ξ) and evaluating a function that approximates the log density ratio log p(θ|y, ξ)/p(θ) (Foster

et al., 2020, 2021). However, using this trick implicitly ties these methods into using the prior predictive

distribution as a simulator for y.

One avenue to deal with the problem of model misspecification is to place more emphasis on designing

a truly realistic simulator model with a prior predictive distribution that matches with expert prior

knowledge. Such a simulator, though, may not be an explicit likelihood model. This suggests that

implicit likelihood methods (Kleinegesse and Gutmann, 2018; Kleinegesse et al., 2020; Ivanova et al.,

2021) may be of particular importance within Bayesian experimental design, where defining an accurate
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simulator model is important when attempting to avoid pitfalls associated with model misspecification.

7.6.2 Long experiments with DAD

In DAD (Foster et al., 2021), we introduced the sPCE objective

LT (π, L) = Ep(θ0,hT |π)p(θ1:L)

[
log

p(hT |θ0, π)
1

L+1

∑L
`=0 p(hT |θ`, π)

]
. (7.224)

We can interpret the sPCE objective as rewarding the total information gained from the entire sequence

of experiments hT about θ. We investigated DAD with a number of steps up to about T = 30 and found

that it performed well. However, one can imagine several potential problems with this approach as T

grows to be very large.

First, DAD in its current formulation only ‘rewards’ the design network at the final step of the experiment,

when the sPCE objective is computed. This has practical benefits for the computational cost of the

algorithm and avoids intermediate posterior calculation. However, the terminal reward formulation may

fall afoul of the temporal credit assignment problem (Sutton, 1984) as T grows to be large.

Second, statistically speaking the sPCE objective relies on contrastive samples θ1:L from the prior. The

estimate of marginal likelihood used in the sPCE objective, namely 1
L+1

∑L
`=0 p(hT |θ`, π), is not much

different from an importance sampling estimate using the prior, although with the distinction of using

the true posterior sample θ0 in the estimate. As such, it is likely that the quality of sPCE will degrade

as the prior becomes a worse proposal distribution for estimating marginal likelihood. Since we have

p(hT |θ, π) =
∏T
t=1 p(yt|θ, ξt), we see that additional likelihood terms are incorporated for each step of

the experiment, likely meaning that the true posterior moves further and further from the prior as T

increases. This intuition is borne out by the asymptotic theory. A possible solution for designing large

T experiments with DAD is to switch to using the sACE objective

sACET (π, L, q) = Ep(θ0,hT |π)q(θ1:L|hT )


log

p(hT |θ0,π)p(θ0)
q(θ0|hT )

1
L+1

∑L
`=0

p(hT |θ`,π)p(θ`)
q(θ`|hT )


 . (7.225)

This form of the objective incorporates an explicit proposal distribution q. Using sACE, the question

becomes how to define a suitable proposal distribution. In DAD, we focused on variational proposal dis-

tributions that are learned simultaneously with the design policy network. However, the sACE objective

is not formally limited to variational proposal distributions. We could, for example, consider proposals

that are obtained using sequential Monte Carlo samplers (Del Moral et al., 2006).

7.6.3 Expertise and practical considerations

By introducing deep learning into Bayesian experimental design, the need to perform hyperparameter

optimization (Bergstra et al., 2011) and neural network architecture design now play a role in BED.

The choice of neural network architecture, in particular, will influence the quality of EIG estimates that
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can be obtained with variational methods and the quality of design policy networks learned with DAD.

Whilst automated methods for designing neural networks are a topic of current research (Baker et al.,

2016), much of the field currently relies on designs chosen by hand, requiring significant expertise.

Other practical considerations include the ease of use of software for Bayesian experimental design,

where users might wish to quickly specify new models and priors for use with the current state-of-the-

art methods. In this context, the use of probabilistic programming languages for experimental design

(Ouyang et al., 2016) provides a framework for writing experimental design algorithms in a model agnostic

way, allowing the user to specify their model as a stochastic program. In our work, we have focused on

the Pyro language (Bingham et al., 2018) as a framework for combining probabilistic programming, deep

learning, and Bayesian experimental design. Links to the code can be found in the relevant chapters.
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